12,412 research outputs found

    A new stellar mixing process operating below shell convection zones following off-center ignition

    Full text link
    During most stages of stellar evolution the nuclear burning of lighter to heavier elements results in a radial composition profile which is stabilizing against buoyant acceleration, with light material residing above heavier material. However, under some circumstances, such as off-center ignition, the composition profile resulting from nuclear burning can be destabilizing, and characterized by an outwardly increasing mean molecular weight. The potential for instabilities under these circumstances, and the consequences that they may have on stellar structural evolution, remain largely unexplored. In this paper we study the development and evolution of instabilities associated with unstable composition gradients in regions which are initially stable according to linear Schwarzschild and Ledoux criteria. In particular, we explore the mixing taking place under various conditions with multi-dimensional hydrodynamic convection models based on stellar evolutionary calculations of the core helium flash in a 1.25 \Msun star, the core carbon flash in a 9.3\,\Msun star, and of oxygen shell burning in a star with a mass of 23\,\Msun. The results of our simulations reveal a mixing process associated with regions having outwardly increasing mean molecular weight that reside below convection zones. The mixing is not due to overshooting from the convection zone, nor is it due directly to thermohaline mixing which operates on a timescale several orders of magnitude larger than the simulated flows. Instead, the mixing appears to be due to the presence of a wave field induced in the stable layers residing beneath the convection zone which enhances the mixing rate by many orders of magnitude and allows a thermohaline type mixing process to operate on a dynamical, rather than thermal, timescale. We discuss our results in terms of related laboratory phenomena and associated theoretical developments.Comment: accepted for publication in Astrophysical Journal, 9 pages, 8 figure

    Fan Noise Prediction with Applications to Aircraft System Noise Assessment

    Get PDF
    This paper describes an assessment of current fan noise prediction tools by comparing measured and predicted sideline acoustic levels from a benchmark fan noise wind tunnel test. Specifically, an empirical method and newly developed coupled computational approach are utilized to predict aft fan noise for a benchmark test configuration. Comparisons with sideline noise measurements are performed to assess the relative merits of the two approaches. The study identifies issues entailed in coupling the source and propagation codes, as well as provides insight into the capabilities of the tools in predicting the fan noise source and subsequent propagation and radiation. In contrast to the empirical method, the new coupled computational approach provides the ability to investigate acoustic near-field effects. The potential benefits/costs of these new methods are also compared with the existing capabilities in a current aircraft noise system prediction tool. The knowledge gained in this work provides a basis for improved fan source specification in overall aircraft system noise studies

    Applied Force and sEMG Muscle Activity Required To Operate Pistol Grip Control in an Electric Utility Aerial Bucket

    Get PDF
    Electric utility line workers report high levels of fatigue in forearm muscles when operating a conventional pistol grip control in aerial buckets. This study measured the applied force and surface electromyographic (sEMG) signals from four upper extremity muscles required to operate the pistol grip control in two tasks. The first task was movement of the pistol grip in six directions (up/down, forward/rearward, clockwise/counter-clockwise), and the second task was movement of the bucket from its resting position on the truck bed to an overhead conductor on top of a 40 ft tall pole. The force applied to the pistol grip was measured in 14 aerial bucket trucks, and sEMG activity was measured on eight apprentice line workers. The applied force required to move the pistol grip control in the six directions ranged from 12 to 15 lb. The sEMG activity in the extensor digitorum communis (EDC) forearm muscle was approximately twice as great or more than the other three muscles (flexor digitorum superficialis, triceps, and biceps). Line workers exerted 14 to 30% MVCEMG to move the pistol grip in the six directions. Average %MVCEMG of the EDC to move the bucket from the truck platform to an overhead line ranged from 26 to 30% across the four phases of the task. The sEMG findings from this study provide physiologic evidence to support the anecdotal reports of muscle fatigue from line workers after using the pistol grip control for repeated, long durations

    An Analysis of ALMA Deep Fields and the Perceived Dearth of High-z Galaxies

    Get PDF
    Deep, pencil-beam surveys from ALMA at 1.1-1.3mm have uncovered an apparent absence of high-redshift dusty galaxies, with existing redshift distributions peaking around z1.52.5z\sim1.5-2.5. This has led to a perceived dearth of dusty systems at z>4z>4, and the conclusion, according to some models, that the early Universe was relatively dust-poor. In this paper, we extend the backward evolution galaxy model described by Casey et al. (2018) to the ALMA regime (in depth and area) and determine that the measured number counts and redshift distributions from ALMA deep field surveys are fully consistent with constraints of the infrared luminosity function (IRLF) at z<2.5z<2.5 determined by single-dish submillimeter and millimeter surveys conducted on much larger angular scales (110\sim1-10deg2^{2}). We find that measured 1.1-1.3mm number counts are most constraining for the measurement of the faint-end slope of the IRLF at z4z4. Recent studies have suggested that UV-selected galaxies at z>4z>4 may be particularly dust-poor, but we find their millimeter-wave emission cannot rule out consistency with the Calzetti dust attenuation law even by assuming relatively typical, cold-dust (Tdust30T_{\rm dust}\approx30\,K) SEDs. Our models suggest that the design of ALMA deep fields requires substantial revision to constrain the prevalence of z>4z>4 early Universe obscured starbursts. The most promising avenue for detection and characterization of such early dusty galaxies will come from future ALMA 2mm blank field surveys covering a few hundred arcmin2^{2} and the combination of existing and future dual-purpose 3mm datasets.Comment: 21 pages, 12 figures, accepted for publication in Ap

    Near-Infrared MOSFIRE Spectra of Dusty Star-Forming Galaxies at 0.2<z<4

    Get PDF
    We present near-infrared and optical spectroscopic observations of a sample of 450μ\mum and 850μ\mum-selected dusty star-forming galaxies (DSFGs) identified in a 400 arcmin2^2 area in the COSMOS field. Thirty-one sources of the 102 targets were spectroscopically confirmed at 0.2<z<40.2<z<4, identified primarily in the near-infrared with Keck MOSFIRE and some in the optical with Keck LRIS and DEIMOS. The low rate of confirmation is attributable both to high rest-frame optical obscuration in our targets and limited sensitivity to certain redshift ranges. The high-quality photometric redshifts available in the COSMOS field allow us to test the robustness of photometric redshifts for DSFGs. We find a subset (11/3135\approx35%) of DSFGs with inaccurate (Δz/(1+z)>0.2\Delta z/(1+z)>0.2) or non-existent photometric redshifts; these have very distinct spectral energy distributions from the remaining DSFGs, suggesting a decoupling of highly obscured and unobscured components. We present a composite rest-frame 4300--7300\AA\ spectrum for DSFGs, and find evidence of 200±\pm30 km s1^{-1} gas outflows. Nebular line emission for a sub-sample of our detections indicate that hard ionizing radiation fields are ubiquitous in high-z DSFGs, even more so than typical mass or UV-selected high-z galaxies. We also confirm the extreme level of dust obscuration in DSFGs, measuring very high Balmer decrements, and very high ratios of IR to UV and IR to Hα\alpha luminosities. This work demonstrates the need to broaden the use of wide bandwidth technology in the millimeter to the spectroscopic confirmations of large samples of high-z DSFGs, as the difficulty in confirming such sources at optical/near-infrared wavelengths is exceedingly challenging given their obscuration.Comment: 14 pages, 13 figures, ApJ accepted. Composite DSFG Halpha spectrum available at www.as.utexas.edu/~cmcasey/downloads.htm

    Identification of early gene expression changes in primary cultured neurons treated with topoisomerase I poisons.

    Get PDF
    Topoisomerase 1 (TOP1) poisons like camptothecin (CPT) are currently used in cancer chemotherapy but these compounds can have damaging, off-target effects on neurons leading to cognitive, sensory and motor deficits. To understand the molecular basis for the enhanced sensitivity of neurons to CPT, we examined the effects of compounds that inhibit TOP1-CPT, actinomycin D (ActD) and β-lapachone (β-Lap)-on primary cultured rat motor (MN) and cortical (CN) neurons as well as fibroblasts. Neuronal cells expressed higher levels of Top1 mRNA than fibroblasts but transcript levels are reduced in all cell types after treatment with CPT. Microarray analysis was performed to identify differentially regulated transcripts in MNs in response to a brief exposure to CPT. Pathway analysis of the differentially expressed transcripts revealed activation of ERK and JNK signaling cascades in CPT-treated MNs. Immediate-early genes like Fos, Egr-1 and Gadd45b were upregulated in CPT-treated MNs. Fos mRNA levels were elevated in all cell types treated with CPT; Egr-1, Gadd45b and Dyrk3 transcript levels, however, increased in CPT-treated MNs and CNs but decreased in CPT-treated fibroblasts. These transcripts may represent new targets for the development of therapeutic agents that mitigate the off-target effects of chemotherapy on the nervous system

    Dynamics of Wolbachia pipientis gene expression across the Drosophila melanogaster life cycle

    Get PDF
    Symbiotic interactions between microbes and their multicellular hosts have manifold impacts on molecular, cellular and organismal biology. To identify candidate bacterial genes involved in maintaining endosymbiotic associations with insect hosts, we analyzed genome-wide patterns of gene expression in the alpha-proteobacteria Wolbachia pipientis across the life cycle of Drosophila melanogaster using public data from the modENCODE project that was generated in a Wolbachia-infected version of the ISO1 reference strain. We find that the majority of Wolbachia genes are expressed at detectable levels in D. melanogaster across the entire life cycle, but that only 7.8% of 1195 Wolbachia genes exhibit robust stage- or sex-specific expression differences when studied in the "holo-organism" context. Wolbachia genes that are differentially expressed during development are typically up-regulated after D. melanogaster embryogenesis, and include many bacterial membrane, secretion system and ankyrin-repeat containing proteins. Sex-biased genes are often organised as small operons of uncharacterised genes and are mainly up-regulated in adult males D. melanogaster in an age-dependent manner suggesting a potential role in cytoplasmic incompatibility. Our results indicate that large changes in Wolbachia gene expression across the Drosophila life-cycle are relatively rare when assayed across all host tissues, but that candidate genes to understand host-microbe interaction in facultative endosymbionts can be successfully identified using holo-organism expression profiling. Our work also shows that mining public gene expression data in D. melanogaster provides a rich set of resources to probe the functional basis of the Wolbachia-Drosophila symbiosis and annotate the transcriptional outputs of the Wolbachia genome.Comment: 58 pages, 6 figures, 6 supplemental figures, 4 supplemental files (available at https://github.com/bergmanlab/wolbachia/tree/master/gutzwiller_et_al/arxiv

    Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada

    Get PDF
    Black carbon (BC) concentrations observed in 22 snowpits sampled in the northwest sector of the Greenland ice sheet in April 2014 have allowed us to identify a strong and widespread BC aerosol deposition event, which was dated to have accumulated in the pits from two snow storms between 27 July and 2 August 2013. This event comprises a significant portion (57% on average across all pits) of total BC deposition over 10 months (July 2013 to April 2014). Here we link this deposition event to forest fires burning in Canada during summer 2013 using modeling and remote sensing tools. Aerosols were detected by both the Cloud‐Aerosol Lidar with Orthogonal Polarization (on board CALIPSO) and Moderate Resolution Imaging Spectroradiometer (Aqua) instruments during transport between Canada and Greenland. We use high‐resolution regional chemical transport modeling (WRF‐Chem) combined with high‐resolution fire emissions (FINNv1.5) to study aerosol emissions, transport, and deposition during this event. The model captures the timing of the BC deposition event and shows that fires in Canada were the main source of deposited BC. However, the model underpredicts BC deposition compared to measurements at all sites by a factor of 2–100. Underprediction of modeled BC deposition originates from uncertainties in fire emissions and model treatment of wet removal of aerosols. Improvements in model descriptions of precipitation scavenging and emissions from wildfires are needed to correctly predict deposition, which is critical for determining the climate impacts of aerosols that originate from fires
    corecore