24 research outputs found

    Indication of Gamma-ray Emission from the Newly Discovered Dwarf Galaxy Reticulum II

    Get PDF
    We present a search for gamma-ray emission from the direction of the newly discovered dwarf galaxy Reticulum II. Using Fermi-LAT data, we detect a signal that exceeds expected backgrounds between ~2-10 GeV and is consistent with annihilation of dark matter for particle masses less than a few x 10^2 GeV. Modeling the background as a Poisson process based on Fermi-LAT diffuse models, and taking into account trials factors, we detect emission with p-value less than 9.8 x 10^-5 (>3.7 sigma). An alternative, model-independent treatment of background reduces the significance, raising the p-value to 9.7 x 10^-3 (2.3 sigma). Even in this case, however, Reticulum II has the most significant gamma-ray signal of any known dwarf galaxy. If Reticulum II has a dark matter halo that is similar to those inferred for other nearby dwarfs, the signal is consistent with the s-wave relic abundance cross section for annihilation.Comment: 6 pages, 4 figures; matches version to appear in Physical Review Letter

    Atlas of Transcription Factor Binding Sites from ENCODE DNase Hypersensitivity Data across 27 Tissue Types.

    Get PDF
    Characterizing the tissue-specific binding sites of transcription factors (TFs) is essential to reconstruct gene regulatory networks and predict functions for non-coding genetic variation. DNase-seq footprinting enables the prediction of genome-wide binding sites for hundreds of TFs simultaneously. Despite the public availability of high-quality DNase-seq data from hundreds of samples, a comprehensive, up-to-date resource for the locations of genomic footprints is lacking. Here, we develop a scalable footprinting workflow using two state-of-the-art algorithms: Wellington and HINT. We apply our workflow to detect footprints in 192 ENCODE DNase-seq experiments and predict the genomic occupancy of 1,515 human TFs in 27 human tissues. We validate that these footprints overlap true-positive TF binding sites from ChIP-seq. We demonstrate that the locations, depth, and tissue specificity of footprints predict effects of genetic variants on gene expression and capture a substantial proportion of genetic risk for complex traits

    Impact of Smoking Status on Mortality in STEMI Patients Undergoing Mechanical Reperfusion for STEMI : Insights from the ISACS–STEMI COVID-19 Registry

    Get PDF
    The so-called “smoking paradox”, conditioning lower mortality in smokers among STEMI patients, has seldom been addressed in the settings of modern primary PCI protocols. The ISACS– STEMI COVID-19 is a large-scale retrospective multicenter registry addressing in-hospital mortality, reperfusion, and 30-day mortality among primary PCI patients in the era of the COVID-19 pandemic. Among the 16,083 STEMI patients, 6819 (42.3%) patients were active smokers, 2099 (13.1%) previous smokers, and 7165 (44.6%) non-smokers. Despite the impaired preprocedural recanalization (p < 0.001), active smokers had a significantly better postprocedural TIMI flow compared with nonsmokers (p < 0.001); this was confirmed after adjustment for all baseline and procedural confounders, and the propensity score. Active smokers had a significantly lower in-hospital (p < 0.001) and 30-day (p < 0.001) mortality compared with non-smokers and previous smokers; this was confirmed after adjustment for all baseline and procedural confounders, and the propensity score. In conclusion, in our population, active smoking was significantly associated with improved epicardial recanalization and lower in-hospital and 30-day mortality compared with previous and non-smoking histor

    Impact of chronic obstructive pulmonary disease on short-term outcome in patients with ST-elevation myocardial infarction during COVID-19 pandemic: insights from the international multicenter ISACS-STEMI registry

    Get PDF
    Background Chronic obstructive pulmonary disease (COPD) is projected to become the third cause of mortality worldwide. COPD shares several pathophysiological mechanisms with cardiovascular disease, especially atherosclerosis. However, no definite answers are available on the prognostic role of COPD in the setting of ST elevation myocardial infarction (STEMI), especially during COVID-19 pandemic, among patients undergoing primary angioplasty, that is therefore the aim of the current study. Methods In the ISACS-STEMI COVID-19 registry we included retrospectively patients with STEMI treated with primary percutaneous coronary intervention (PCI) between March and June of 2019 and 2020 from 109 high-volume primary PCI centers in 4 continents. Results A total of 15,686 patients were included in this analysis. Of them, 810 (5.2%) subjects had a COPD diagnosis. They were more often elderly and with a more pronounced cardiovascular risk profile. No preminent procedural dissimilarities were noticed except for a lower proportion of dual antiplatelet therapy at discharge among COPD patients (98.9% vs. 98.1%, P = 0.038). With regards to short-term fatal outcomes, both in-hospital and 30-days mortality occurred more frequently among COPD patients, similarly in pre-COVID-19 and COVID-19 era. However, after adjustment for main baseline differences, COPD did not result as independent predictor for in-hospital death (adjusted OR [95% CI] = 0.913[0.658-1.266], P = 0.585) nor for 30-days mortality (adjusted OR [95% CI] = 0.850 [0.620-1.164], P = 0.310). No significant differences were detected in terms of SARS-CoV-2 positivity between the two groups. Conclusion This is one of the largest studies investigating characteristics and outcome of COPD patients with STEMI undergoing primary angioplasty, especially during COVID pandemic. COPD was associated with significantly higher rates of in-hospital and 30-days mortality. However, this association disappeared after adjustment for baseline characteristics. Furthermore, COPD did not significantly affect SARS-CoV-2 positivity. Trial registration number: NCT 04412655 (2nd June 2020)

    Biological insights from multi-omic analysis of 31 genomic risk loci for adult hearing difficulty.

    No full text
    Age-related hearing impairment (ARHI), one of the most common medical conditions, is strongly heritable, yet its genetic causes remain largely unknown. We conducted a meta-analysis of GWAS summary statistics from multiple hearing-related traits in the UK Biobank (n = up to 330,759) and identified 31 genome-wide significant risk loci for self-reported hearing difficulty (p < 5x10-8), of which eight have not been reported previously in the peer-reviewed literature. We investigated the regulatory and cell specific expression for these loci by generating mRNA-seq, ATAC-seq, and single-cell RNA-seq from cells in the mouse cochlea. Risk-associated genes were most strongly enriched for expression in cochlear epithelial cells, as well as for genes related to sensory perception and known Mendelian deafness genes, supporting their relevance to auditory function. Regions of the human genome homologous to open chromatin in epithelial cells from the mouse were strongly enriched for heritable risk for hearing difficulty, even after adjusting for baseline effects of evolutionary conservation and cell-type non-specific regulatory regions. Epigenomic and statistical fine-mapping most strongly supported 50 putative risk genes. Of these, 39 were expressed robustly in mouse cochlea and 16 were enriched specifically in sensory hair cells. These results reveal new risk loci and risk genes for hearing difficulty and suggest an important role for altered gene regulation in the cochlear sensory epithelium

    Genome-Scale Transcriptional Regulatory Network Models of Psychiatric and Neurodegenerative Disorders.

    No full text
    Transcriptional regulatory changes in the developing and adult brain are prominent features of brain diseases, but the involvement of specific transcription factors (TFs) remains poorly understood. We integrated brain-specific DNase footprinting and TF-gene co-expression to reconstruct a transcriptional regulatory network (TRN) model for the human brain. We identified key regulator TFs whose predicted target genes were enriched for differentially expressed genes in the prefrontal cortex of individuals with psychiatric and neurodegenerative diseases. Many of these TFs were further implicated in the same diseases through disruption of their binding sites by disease-associated SNPs and associations of TF loci with disease risk. Using primary human neural stem cells, we validated network predictions that link the TF POU3F2 to schizophrenia and bipolar disorder via both cis- and trans-acting mechanisms. Our models of brain-specific TF binding sites and target genes provide a resource for network analysis of brain diseases

    Interface Controlled Oxidation States in Layered Cobalt Oxide Nanoislands on Gold

    No full text
    Layered cobalt oxides have been shown to be highly active catalysts for the oxygen evolution reaction (OER; half of the catalytic "water splitting" reaction), particularly when promoted with gold. However, the surface chemistry of cobalt oxides and in particular the nature of the synergistic effect of gold contact are only understood on a rudimentary level, which at present prevents further exploration. We have synthesized a model system of flat, layered cobalt oxide nanoislands supported on a single crystal gold (111) substrate. By using a combination of atom-resolved scanning tunneling microscopy, X-ray photoelectron and absorption spectroscopies and density functional theory calculations, we provide a detailed analysis of the relationship between the atomic-scale structure of the nanoislands, Co oxidation states and substrate induced charge transfer effects in response to the synthesis oxygen pressure. We reveal that conversion from CO2+ to Co3+ can occur by a facile incorporation of oxygen at the interface between the nanoisland and gold, changing the islands from a Co-O bilayer to an O-Co-O trilayer. The O-Co-O trilayer islands have the structure of a single layer of beta-CoOOH, proposed to be the active phase for the OER, making this system a valuable model in understanding of the active sites for OER. The Co oxides adopt related island morphologies without significant structural reorganization, and our results directly demonstrate that nanosized Co oxide islands have a much higher structural flexibility than could be predicted from bulk properties. Furthermore, it is clear that the gold/nanoparticle interface has a profound effect on the structure of the nanoislands, suggesting a possible promotion mechanism
    corecore