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We present a search for γ-ray emission from the direction of the newly discovered dwarf galaxy
Reticulum II. Using Fermi-LAT data, we detect a signal that exceeds expected backgrounds between
∼ 2− 10 GeV and is consistent with annihilation of dark matter for particle masses less than a few
× 102 GeV. Modeling the background as a Poisson process based on Fermi-LAT diffuse models, and
taking into account trials factors, we detect emission with p-value less than 9.8×10−5 (> 3.7σ). An
alternative, model-independent treatment of background reduces the significance, raising the p-value
to 9.7× 10−3 (2.3σ). Even in this case, however, Reticulum II has the most significant γ-ray signal
of any known dwarf galaxy. If Reticulum II has a dark matter halo that is similar to those inferred
for other nearby dwarfs, the signal is consistent with the s-wave relic abundance cross section for
annihilation.

PACS numbers: 95.35.+d, 98.80.-k, 95.55.Ka, 98.56.Wm

Dark matter’s non-gravitational interactions have pro-
found implications for particle physics beyond the Stan-
dard Model, motivating searches for high-energy photons
produced via annihilation. The search for γ-rays in dwarf
galaxies [e.g. 1–20] provides an alternative to searches in
regions that enjoy superior statistics but suffer from com-
plicated backgrounds (e.g. the Galactic center [21–31]).
The observed stellar kinematics of dwarf galaxies imply
gravitational potentials dominated by dark matter [32–
35]. Many of these objects are nearby, are located at high
galactic latitudes far from complicated emission regions,
and possess no known astrophysical γ-ray sources. Pre-
vious studies of dwarf galaxies have found no significant
γ-ray emission, setting strong limits on the cross section
for dark matter annihilation [7, 11–14, 17, 36–41]

Using photometric data from the Dark Energy Survey
(DES) [42], Koposov et al. [43] and The DES Collabora-
tion et al. [44] have recently announced the discovery of
several low-luminosity Milky Way satellites in the South-
ern sky. Koposov et al. [43] report 9 new objects. One
of these, Reticulum II (RetII), at a distance of 30 kpc,
is the nearest dwarf galaxy after Segue 1 (Seg1, 23 kpc)
and Sagittarius (24 kpc). RetII is ∼ 3 times more lu-
minous than Seg1, suggesting that its dark matter halo
may be more massive than Seg1’s and making RetII an
attractive place to search for a dark matter annihilation
signal.

Reticulum II occupies a near-ideal location for γ-ray
analysis: 49.7◦ below the Galactic plane and far from
known γ-ray emitting sources (the closest source in the
3rd Fermi Catalog [45] is 2.9◦ away). At energies above

1 GeV the γ-ray point spread function is significantly less
than 1◦, making source contamination unlikely. Of the
nearby dwarfs, only Seg1 is further from known sources.
The interstellar emission model provided by the Fermi
collaboration shows that emission from diffuse processes
is relatively uniform within 10◦ of RetII.

We use Fermi-LAT data [46] collected between Au-
gust 8, 2008 and February 6, 2015. Using the pub-
licly available Fermi Science Tools (http://fermi.
gsfc.nasa.gov/ssc/) (version v9r33p0), we extract
Pass 7 Reprocessed SOURCE class events within 10◦ of
RetII using gtselect with zmax=100◦, and find good
time intervals with gtmktime with filter DATA QUAL==1

&& LAT CONFIG==1 and roicut=no. The PSF and ex-
posure in the direction of RetII are found by run-
ning gtselect with a radius of 0.5◦, gtmktime with
roicut=yes, gtltcube with default options, and gtpsf

(with 17 log-spaced energies between 133.3 MeV and
1.333 TeV, thetamax=10◦, and ntheta=500).

The search for annihilation is based on event weighting
as discussed in [41]. The search suffers minimal loss in
sensitivity when including only events within 0.5◦ of a
dwarf galaxy and with energies above 1 GeV (see Figs.
3–5 of [41]). We adhere to these criteria in this analysis
and define a region of interest (ROI) as a region of radius
0.5◦ containing events between 1–300 GeV. Gamma-ray
sources from the 3rd Fermi Catalog are assigned masks
of at least 0.8◦ (the approximate PSF at 1 GeV).

Figure 1 shows the energy spectrum derived from
an ROI centered on RetII (red points). For each
energy bin, the differential flux dF/dE is the num-
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FIG. 1: Energy spectrum of events detected within 0.5◦ of
RetII (red points) with 68% Poisson error bars. Two back-
ground estimates are shown: 1) the sum (solid black) of
the Fermi Collaboration’s models for isotropic (dashed) and
galactic diffuse (dot dash) emission at the location of RetII,
and 2) the average intensity (gray triangles) within 3306 ROIs
that lie within 10◦ of RetII and overlap neither known sources
nor the ROI centered on RetII. The number of events detected
from RetII in each energy bin is shown above the error bar.
The number expected from the Fermi background model is
shown below the solid black curve.

ber of events divided by the width of the energy bin,
the instrument exposure, and the ROI’s solid angle.
Error bars indicate standard 68% Poisson confidence
intervals [e.g. 47] on the mean counts in each bin
(5 bins per decade between 0.2 GeV and 300 GeV).
The figure also shows two estimates of background.
First, the solid black line represents a two-component
background model that is derived by the Fermi col-
laboration (http://fermi.gsfc.nasa.gov/ssc/data/
access/lat/BackgroundModels.html). It is the sum
of the isotropic spectrum iso source v05.txt (dashed
black line) and the diffuse interstellar emission model
gll iem v05 rev1.fit (dot dashed). The latter is aver-
aged over the 1◦ region surrounding RetII (we confirmed
that the curve does not change for any choice of radius
within 5◦). Second, gray triangles indicate an empirical
estimate of background, showing the average intensity
within 3306 ROIs that fall within 10◦ of RetII and do
not overlap with any source masks, the central ROI, or
the boundary of the 10◦ region (see Fig. 3, right panel).
The two estimates of background show good agreement.
Between 2 GeV and 10 GeV, the spectrum from RetII
clearly rises above the expected background.

To derive a detection significance we employ the follow-
ing method (see [41] for details). Each event in the ROI is
assigned a weight w(E, θ) based on its energy E and an-
gular separation θ from the ROI center. The test statistic
T =

∑
w(Ei, θi) is the sum of the weights of all events in

the ROI, with larger values of T providing evidence of a
signal. In this approach, the most powerful weight func-
tion for testing the background-only hypothesis is given
by w(E, θ) = log[1+s(E, θ)/b(E, θ)], where s(E, θ) is the
expected number (in a small dE, dθ range) of events due
to dark matter annihilation for the alternative hypothe-
sis (signal) and b(E, θ) is the expected number from all
other sources (background).

The expected signal depends on the dark matter parti-
cle properties (mass M , annihilation cross section 〈σv〉),
the dark matter content of the dwarf galaxy (parame-
terized here by the single quantity J [e.g. 48]), and the
detector response (exposure ε and PSF):

s(E, θ)

dEdθ
=
〈σv〉J
8πM2

dNf (E)

dE
×ε(E)PSF(θ|E)2π sin(θ). (1)

For annihilation into a final state f , dNf/dE is the num-
ber of γ-rays produced (per interval dE) per annihilation.
We adopt the annihilation spectra of Cirelli et al. [49],
which include electroweak corrections [50]. Note that the
unknown J value is exactly degenerate with 〈σv〉.

We quantify the signal’s significance by calculating its
p-value: the probability that background could generate
events with a total weight greater than that observed for
the ROI centered on RetII. We also quote “σ values”,
CDF−1(1− p), using the standard normal CDF.

First we compute significance by modeling the back-
ground in the central ROI as an isotropic Poisson pro-
cess. This procedure is justified by RetII’s location in a
quiet region that is far from known sources and strong
gradients (see Fig. 3, right panel). Specifically, we as-
sume that 1) the number of background events within
0.5◦ of RetII is a Poisson variable, 2) background events
are distributed isotropically, and 3) their energies are in-
dependent draws from a given spectrum. Under these
assumptions the test statistic is a compound Poisson vari-
ate whose PDF we can calculate for any weight function
and any adopted background spectrum [41]. There is
no assumption that the PDF follows an asymptotic form
such as χ2.

We consider four possible energy spectra for the back-
ground b(E, θ). The first two are sums of the Fermi col-
laboration’s isotropic and galactic-diffuse models, where
the latter is averaged within either 1◦ or 2◦ of RetII. We
refer to these spectra as ‘Diffuse 1’ (this is the same back-
ground model shown in Fig. 1) and ‘Diffuse 2’. The third
is an empirically-derived spectrum (‘Empirical 1’) using
events between 1◦ and 5◦ from RetII (excluding masked
sources). Below 10 GeV, this spectrum is a kernel den-
sity estimate, with each event replaced by a Gaussian
with width 20% of its energy. Above 10 GeV we fit a
power law with exponential cutoff. Finally, we bin the
same events (30 bins between 0.2 GeV and 1 TeV) in or-
der to construct a fourth possible background spectrum
(‘Empirical 2’), where the intensity between bin centers
is found by linear interpolation in log(intensity). Fig-

http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
http://fermi.gsfc.nasa.gov/ssc/data/access/lat/BackgroundModels.html
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FIG. 2: Significance of the γ-ray excess in the direction of Reticulum II as a function of dark matter particle mass. Left: Curves
correspond to the result of the search in various channels (i.e. using different ways of weighting events) using background model
Diffuse 1. The curve for e+e− is similar to µ+µ−, ZZ is similar to W+W−, and q represents u, d, c, s quarks and gluons. Right:
Significance in the τ+τ− channel for four different background models (see text).

ure 2 shows the significance of the detected γ-ray signal
from RetII for various annihilation channels and for each
background model. In every case, the significance peaks
above 4σ, with little dependence on choice of background
spectrum.

However, it is important to consider a “trials factor”
to account for the fact that we are searching for dark
matter particles of any mass, i.e. conducting multiple
hypothesis tests on the same data. As shown in Fig. 6
of [41], the search is not particularly sensitive to the par-
ticle mass used in the weight function: ∼ 3 trial masses
suffice if the true mass is between 10 GeV and 1 TeV
for the bb̄ and τ+τ− channels. Nonetheless, we quantify
the trials factor by simulating large numbers of ROIs un-
der the Diffuse 1 model. A p-value is found at each trial
mass and the minimum of these pm is recorded for each
simulated ROI. The “global” p-value pglobal is the frac-
tion of simulated ROIs with pm less than that observed
in RetII. Simulating ∼ 30 million background ROIs, we
find pglobal = 9.8 × 10−5 for bb̄ and pglobal = 4.2 × 10−5

for τ+τ−. Note that the trials factor may have a more
significant effect for a lighter final state (e.g. electrons).

Following [11, 38, 41], we also consider an entirely dif-
ferent procedure for computing significance. Under this
second procedure, we construct the PDF of T due to
background by making a histogram of T values for ROIs
distributed over the region surrounding the dwarf. This
procedure is model-independent and automatically ac-
counts for non-Poisson background processes (e.g. due
to unresolved sources), an effect examined by several
groups [11, 19, 40, 41, 51–53].

The left-hand panel of Fig. 3 shows the significance
of RetII’s signal as calculated following the model-
independent procedure. Compared with the Poisson-

process model for background (see above), this proce-
dure assigns less significance to RetII’s γ-ray signal (in
accord with [19, 40, 41]). For example, when searching
for a 25 GeV particle annihilating to τ+τ−, eight of 3306
background ROIs have T -values larger than RetII’s (2.8σ;
other channels show similar reductions in significance).

A trials factor for the model-independent approach is
found by counting the number of background ROIs which
have T values among the top n for at least one mass con-
sidered (n is the rank of the central ROI at the most
significant mass). For annihilation into τ+τ−, n = 9
and there are 32 such ROIs, giving a global p-value of
32/3306 = 0.0097 (2.3σ). The same global significance
is found by computing what fraction of simulated Pois-
son background ROIs have a minimum p-value less than
8/3306.

The application of this model-independent procedure
to RetII reveals its fundamental limitation: a strong sig-
nal necessarily implies that very few background ROIs
have T larger than that of the object of interest. Thus,
poor sampling of the large-T tail prevents a robust cal-
culation of significance for the RetII signal. For example,
had we used a 5◦ background region instead of 10◦, zero
background ROIs would have given a T value larger than
RetII, indicating that the significance calculation breaks
down when there are not enough “independent” back-
ground regions. In any case, this procedure clearly iden-
tifies RetII’s as the most tantalizing γ-ray signal from
any known dwarf galaxy (left-hand panel of Fig. 3).

If the γ-ray signal is interpreted as dark matter anni-
hilation, we perform a simple exploration of the allowed
particle parameter space. As shown in [41], for the two
parameters M and 〈σv〉, the likelihood ratio is related to
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FIG. 3: Left: Significance of γ-ray detection for annihilation into τ+τ− for various masses, calculated using the model-
independent procedure of [41]. Solid and dashed blue lines correspond to RetII and Seg1 (another attractive nearby target).
Gray curves correspond to the collection of dwarfs used in [41] as well as the 8 other newly discovered DES dwarfs. Right: The
Fermi isotropic+diffuse model intensity near RetII. The color corresponds to intensity normalized to the value in the direction
of RetII (at an energy of 8 GeV — other energies are similar). A 0.5◦ ROI is shown at the center and the small dots show
the centers of the ROIs used for the empirical background estimation. White ×’s mark the locations of known γ-ray sources.
Green circles are the ROIs which have a test statistic larger than that in the central ROI (when searching for a 25 GeV particle
annihilating to τ+τ−).

T :

log
L(data | (M, 〈σv〉) + bg)

L(data | bg)
= T −

∫
E,θ

s(E, θ), (2)

where the integral is the expected number of events in
the ROI due to dark matter annihilation. We denote the
right-hand side as λ(M, 〈σv〉). Maximizing λ(M, 〈σv〉)
yields the maximum likelihood estimate M̂, 〈̂σv〉. The

difference 2λ(M̂, 〈̂σv〉) − 2λ(M, 〈σv〉) is distributed as a
χ2 variable with 2 degrees of freedom [54] when M, 〈σv〉
are the true values of the mass and cross section. There-
fore, regions of (M, 〈σv〉) space where this difference is
less than 2.3, 6.2, and 11.8 constitute 68.2%, 95.4%, and
99.7% confidence regions. The χ2 behavior holds only for
large sample sizes and it is not clear if that assumption is
valid here. In particular, for annihilation into electrons
or muons, where low masses are preferred, there are very
few events above 1 GeV but below the dark matter mass.

Figure 4 shows the derived constraints on the product
J〈σv〉 for a number of representative channels. Although
we cannot make a direct measurement of the cross sec-
tion, the constraints on J〈σv〉, combined with indepen-
dent knowledge of 〈σv〉, allow us to make a prediction for
the dark matter content of RetII which must hold if the
γ-ray emission is due to annihilating dark matter. In the
τ+τ− channel, for example, dividing the maximum like-
lihood estimate of J〈σv〉 (Fig. 4) by the 95% upper limit
on 〈σv〉 from [41] yields log10 J & 19.6 ± 0.3, where the
uncertainty reflects the 68% confidence region shown in
Fig. 4. For comparison, Seg1 has log10 J = 19.3±0.3 [48].
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FIG. 4: An exploration of a dark matter interpretation
of the observed γ-ray excess for four representative anni-
hilation channels. J = J19 1019GeV2cm−5 and 〈σv〉 =
〈σv〉−26 10−26cm3 sec−1. The data constrain only the product
of J〈σv〉 since the dark matter content of Reticulum II is cur-
rently unknown. Contours represent 68%, 95%, and 99.7%
confidence regions. Note that this figure does not quantify
which annihilation channel is preferred by the data, i.e. which
channel provides the best fit to the γ-ray spectrum.

While RetII’s γ-ray signal is tantalizing, it would
be premature to conclude it has a dark matter origin.
Among alternative explanations, perhaps the most mun-
dane is the possibility that an extragalactic source lies
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in the same direction. Computing T as a continuous
function of sky position reveals the peak T -value to oc-
cur 0.083◦ from the optical center of RetII [43], an off-
set similar to typical localization errors for weak, high-
energy sources in the 3rd Fermi Catalog [45]. Thus the
emission is consistent with originating from RetII’s loca-
tion. Searching the BZCAT [55] and CRATES [56] cat-
alogs reveals a CRATES quasar (J033553-543026) that
is 0.46◦ from RetII. Further work must be done to de-
termine whether this particular source contributes to
the emission, though we note that flat spectrum radio
quasars rarely have a spectral index less than 2 [57, 58].
Other diagnostics, such as color-color diagrams, multi-
wavelength surveys, and variability searches, may even-
tually reveal the presence of active galaxies behind RetII.
These must then be considered as possible γ-ray emitters.
However, we emphasize that even without knowledge of
specific background objects, the p-value derived from the
background sampling procedure (Fig. 3) automatically
accounts for the probability that a chance alignment is
causing RetII’s γ-ray signal.

There is also the possibility that γ-ray emission arises
from within RetII, albeit through conventional processes.
One of the much-discussed astrophysical explanations for
the apparent Galactic Center excess is millisecond pul-
sars [24, 26, 59–63]. In the case of RetII, it is the high-
energy behavior of the emission which disfavors a pulsar
model, as millisecond pulsars exhibit an exponential cut-
off at around 2.5 to 4 GeV [26, 30, 63–66]. Alternatively,
high-energy cosmic ray production could potentially arise
in the vicinity of young massive stars. Upcoming photo-
metric and spectroscopic analysis of RetII will check this
possibility.

Thorough explorations of the diffuse background, the
γ-ray events toward RetII, properties of RetII’s dark mat-
ter halo, and any coincident sources will prove crucial to
confirming or ruling out the dark matter interpretation.
Fermi’s upcoming Pass 8 data release [67, 68] will improve
every aspect of the instrument response, allowing for a
more sensitive analysis of RetII and other known and
as-yet-unknown Milky Way companions. Understanding
the γ-ray emission, along with the analysis of RetII as a
galaxy embedded in a dark matter halo, may provide a
long-sought avenue for the characterization of dark mat-
ter particles.

We note that the Fermi collaboration has simultane-
ously performed an independent search for γ-ray emission
and reports no significant excess from any dwarf galaxy,
including RetII [69, 70]. Nevertheless, the strongest sig-
nal they find (p = 0.06), for any annihilation channel and
mass, corresponds to a 25 GeV particle annihilating into
τ+τ− in RetII (cf. our Fig. 3). The reason for any dis-
crepancy with our result is unclear, as the Fermi analysis
is based on unreleased data.

AGS gratefully acknowledges helpful discussions with
Sukhdeep Singh. MGW is supported by NSF grants

AST-1313045 and AST-1412999. SMK is supported by
DOE DE-SC0010010, NSF PHYS-1417505, and NASA
NNX13AO94G. The research leading to these results
has received support from the European Research Coun-
cil under the European Union’s Seventh Framework
Program (FP/2007-2013) ERC Grant Agreement no.
308024.

∗ Electronic address: alexgs@cmu.edu
† Electronic address: mgwalker@andrew.cmu.edu
‡ Electronic address: koushiappas@brown.edu

[1] G. Lake, Nature 346, 39 (1990).
[2] E. A. Baltz and L. Wai, Phys. Rev. D 70, 023512 (2004),

astro-ph/0403528.
[3] L. Bergström and D. Hooper, Phys. Rev. D 73, 063510

(2006), hep-ph/0512317.
[4] S. Colafrancesco, S. Profumo, and P. Ullio, Phys. Rev. D

75, 023513 (2007), astro-ph/0607073.
[5] S. Profumo and M. Kamionkowski, J. Cosmology As-

tropart. Phys. 3, 003 (2006), astro-ph/0601249.
[6] L. E. Strigari, S. M. Koushiappas, J. S. Bullock,

and M. Kaplinghat, Phys. Rev. D 75, 083526 (2007),
arXiv:astro-ph/0611925.

[7] P. Scott, J. Conrad, J. Edsjö, L. Bergström, C. Farnier,
and Y. Akrami, J. Cosmology Astropart. Phys. 1, 31
(2010), 0909.3300.

[8] L. E. Strigari, S. M. Koushiappas, J. S. Bullock,
M. Kaplinghat, J. D. Simon, M. Geha, and B. Willman,
ApJ 678, 614 (2008), 0709.1510.

[9] M. Wood, G. Blaylock, S. M. Bradbury, J. H. Buckley,
K. L. Byrum, Y. C. K. Chow, W. Cui, I. de la Calle
Perez, A. D. Falcone, S. J. Fegan, et al., ApJ 678, 594
(2008), 0801.1708.

[10] H.E.S.S. Collaboration, A. Abramowski, F. Acero,
F. Aharonian, A. G. Akhperjanian, G. Anton, A. Bar-
nacka, U. Barres de Almeida, A. R. Bazer-Bachi,
Y. Becherini, et al., Astroparticle Physics 34, 608 (2011),
1012.5602.

[11] A. Geringer-Sameth and S. M. Koushiappas, Physical
Review Letters 107, 241303 (2011), 1108.2914.

[12] M. Ackermann, M. Ajello, A. Albert, W. B. Atwood,
L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, K. Bech-
tol, R. Bellazzini, et al., Physical Review Letters 107,
241302 (2011), 1108.3546.

[13] M. N. Mazziotta, F. Loparco, F. de Palma, and N. Gigli-
etto, Astroparticle Physics 37, 26 (2012), 1203.6731.

[14] A. N. Baushev, S. Federici, and M. Pohl, Phys. Rev. D
86, 063521 (2012), 1205.3620.

[15] C. He, K. Bechtol, A. P. Hearin, and D. Hooper, ArXiv
e-prints (2013), 1309.4780.

[16] M. Ackermann, M. Ajello, A. Albert, A. Allafort, L. Bal-
dini, G. Barbiellini, D. Bastieri, K. Bechtol, R. Bellazzini,
E. Bissaldi, et al., Phys. Rev. D 88, 082002 (2013).

[17] Y.-L. Sming Tsai, Q. Yuan, and X. Huang, J. Cosmology
Astropart. Phys. 3, 018 (2013), 1212.3990.

[18] K. Spekkens, B. S. Mason, J. E. Aguirre, and B. Nhan,
ApJ 773, 61 (2013), 1301.5306.

[19] E. Carlson, D. Hooper, and T. Linden, ArXiv e-prints
(2014), 1409.1572.

mailto:alexgs@cmu.edu
mailto:mgwalker@andrew.cmu.edu
mailto:koushiappas@brown.edu


6
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