1,439 research outputs found

    DNA methylation meta-analysis reveals cellular alterations in psychosis and markers of treatment-resistant schizophrenia

    Get PDF
    We performed a systematic analysis of blood DNA methylation profiles from 4,483 participants from seven independent cohorts identifying differentially methylated positions (DMPs) associated with psychosis, schizophrenia and treatment-resistant schizophrenia. Psychosis cases were characterized by significant differences in measures of blood cell proportions and elevated smoking exposure derived from the DNA methylation data, with the largest differences seen in treatment-resistant schizophrenia patients. We implemented a stringent pipeline to meta-analyze epigenome-wide association study (EWAS) results across datasets, identifying 95 DMPs associated with psychosis and 1,048 DMPs associated with schizophrenia, with evidence of colocalization to regions nominated by genetic association studies of disease. Many schizophrenia-associated DNA methylation differences were only present in patients with treatment-resistant schizophrenia, potentially reflecting exposure to the atypical antipsychotic clozapine. Our results highlight how DNA methylation data can be leveraged to identify physiological (e.g., differential cell counts) and environmental (e.g., smoking) factors associated with psychosis and molecular biomarkers of treatment-resistant schizophrenia

    The Impact of Incomplete Linkage Disequilibrium and Genetic Model Choice on the Analysis and Interpretation of Genome-wide Association Studies

    Get PDF
    When conducting a genetic association study, it has previously been observed that a multiplicative risk model tends to fit better at a disease-associated marker locus than at the ungenotyped causative locus. This suggests that, while overall risk decreases as linkage disequilibrium breaks down, non-multiplicative components are more affected. This effect is investigated here, in particular the practical consequences it has on testing for trait/marker associations and the estimation of mode of inheritance and risk once an associated locus has been found. The extreme significance levels required for genome-wide association studies define a restricted range of detectable allele frequencies and effect sizes. For such parameters there is little to be gained by using a test that models the correct mode of inheritance rather than the multiplicative; thus the Cochran-Armitage trend test, which assumes a multiplicative model, is preferable to a more general model as it uses fewer degrees of freedom. Equally when estimating risk, it is likely that a multiplicative risk model will provide a good fit to the data, regardless of the underlying mode of inheritance at the true susceptibility locus. This may lead to problems in interpreting risk estimates

    A Bayesian Method for Detecting and Characterizing Allelic Heterogeneity and Boosting Signals in Genome-Wide Association Studies

    Full text link
    The standard paradigm for the analysis of genome-wide association studies involves carrying out association tests at both typed and imputed SNPs. These methods will not be optimal for detecting the signal of association at SNPs that are not currently known or in regions where allelic heterogeneity occurs. We propose a novel association test, complementary to the SNP-based approaches, that attempts to extract further signals of association by explicitly modeling and estimating both unknown SNPs and allelic heterogeneity at a locus. At each site we estimate the genealogy of the case-control sample by taking advantage of the HapMap haplotypes across the genome. Allelic heterogeneity is modeled by allowing more than one mutation on the branches of the genealogy. Our use of Bayesian methods allows us to assess directly the evidence for a causative SNP not well correlated with known SNPs and for allelic heterogeneity at each locus. Using simulated data and real data from the WTCCC project, we show that our method (i) produces a significant boost in signal and accurately identifies the form of the allelic heterogeneity in regions where it is known to exist, (ii) can suggest new signals that are not found by testing typed or imputed SNPs and (iii) can provide more accurate estimates of effect sizes in regions of association.Comment: Published in at http://dx.doi.org/10.1214/09-STS311 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Common DNA markers can account for more than half of the genetic influence on cognitive abilities

    Get PDF
    For nearly a century, twin and adoption studies have yielded substantial estimates of heritability for cognitive abilities, although it has proved difficult for genomewide-association studies to identify the genetic variants that account for this heritability (i.e., the missing-heritability problem). However, a new approach, genomewide complex-trait analysis (GCTA), forgoes the identification of individual variants to estimate the total heritability captured by common DNA markers on genotyping arrays. In the same sample of 3,154 pairs of 12-year-old twins, we directly compared twin-study heritability estimates for cognitive abilities (language, verbal, nonverbal, and general) with GCTA estimates captured by 1.7 million DNA markers. We found that DNA markers tagged by the array accounted for .66 of the estimated heritability, reaffirming that cognitive abilities are heritable. Larger sample sizes alone will be sufficient to identify many of the genetic variants that influence cognitive abilities

    Synergy Disequilibrium Plots: graphical visualization of pairwise synergies and redundancies of SNPs with respect to a phenotype

    Get PDF
    Summary:We present a visualization tool applied on genome-wide association data, revealing disease-associated haplotypes, epistatically interacting loci, as well as providing visual signatures of multivariate correlations of genetic markers with respect to a phenotype

    Using brain cell-type-specific protein interactomes to interpret neurodevelopmental genetic signals in schizophrenia

    Get PDF
    Genetics have nominated many schizophrenia risk genes and identified convergent signals between schizophrenia and neurodevelopmental disorders. However, functional interpretation of the nominated genes in the relevant brain cell types is often lacking. We executed interaction proteomics for six schizophrenia risk genes that have also been implicated in neurodevelopment in human induced cortical neurons. The resulting protein network is enriched for common variant risk of schizophrenia in Europeans and East Asians, is down-regulated in layer 5/6 cortical neurons of individuals affected by schizophrenia, and can complement fine-mapping and eQTL data to prioritize additional genes in GWAS loci. A sub-network centered on HCN1 is enriched for common variant risk and contains proteins (HCN4 and AKAP11) enriched for rare protein-truncating mutations in individuals with schizophrenia and bipolar disorder. Our findings showcase brain cell-type-specific interactomes as an organizing framework to facilitate interpretation of genetic and transcriptomic data in schizophrenia and its related disorders

    A Powerful Approach to Sub-Phenotype Analysis in Population-Based Genetic Association Studies

    Get PDF
    The ultimate goal of genome-wide association (GWA) studies is to identify genetic variants contributing effects to complex phenotypes in order to improve our understanding of the biological architecture underlying the trait. One approach to allow us to meet this challenge is to consider more refined sub-phenotypes of disease, defined by pattern of symptoms, for example, which may be physiologically distinct, and thus may have different underlying genetic causes. The disadvantage of sub-phenotype analysis is that large disease cohorts are sub-divided into smaller case categories, thus reducing power to detect association. To address this issue, we have developed a novel test of association within a multinomial regression modeling framework, allowing for heterogeneity of genetic effects between sub-phenotypes. The modeling framework is extremely flexible, and can be generalized to any number of distinct sub-phenotypes. Simulations demonstrate the power of the multinomial regression-based analysis over existing methods when genetic effects differ between sub-phenotypes, with minimal loss of power when these effects are homogenous for the unified phenotype. Application of the multinomial regression analysis to a genome-wide association study of type 2 diabetes, with cases categorized according to body mass index, highlights previously recognized differential mechanisms underlying obese and non-obese forms of the disease, and provides evidence of a potential novel association that warrants follow-up in independent replication cohorts

    Another tool in the genome-wide association study arsenal: population-based detection of somatic gene conversion

    Get PDF
    The hunt for the genetic contributors to complex disease has used a number of strategies, resulting in the identification of variants associated with many of the common diseases affecting society. However most of the genetic variants detected to date are single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) and fall far short of explaining the full genetic component of any given disease. An as yet untapped genomic mechanism is somatic gene conversion and deletion, which could be complicit in disease risk but has been challenging to detect in genome-wide datasets. In a recent publication in BMC Medicine by Kenneth Ross, the author uses existing datasets to look at somatic gene conversion and deletion in human disease. Here, we describe how Ross's recent efforts to detect such occurrences could impact the field going forward
    corecore