862 research outputs found

    Application of Mice Humanised for Cytochrome P450 CYP2D6 to the Study of Tamoxifen Metabolism and Drug-Drug Interaction with Antidepressants

    Get PDF
    Tamoxifen is an estrogen receptor antagonist used in the treatment of breast cancer. It is a prodrug that is converted by several cytochrome P450 enzymes to a primary metabolite, N-desmethyltamoxifen (NDT), which is then further modified by CYP2D6 to a pharmacologically potent secondary metabolite, 4-hydroxy-N-desmethyltamoxifen (endoxifen). Antidepressants (ADs), which are often coprescribed to patients receiving tamoxifen, are also metabolized by CYP2D6 and evidence suggests that a drug–drug interaction between these agents adversely affects the outcome of tamoxifen therapy by inhibiting endoxifen formation. We evaluated this potentially important drug–drug interaction in vivo in mice humanized for CYP2D6 (hCYP2D6). The rate of conversion of NDT to endoxifen by hCYP2D6 mouse liver microsomes (MLMs) in vitro was similar to that of the most active members of a panel of 13 individual human liver microsomes. Coincubation with quinidine, a CYP2D6 inhibitor, ablated endoxifen generation by hCYP2D6 MLMs. The NDT-hydroxylation activity of wild-type MLMs was 7.4 times higher than that of hCYP2D6, whereas MLMs from Cyp2d knockout animals were inactive. Hydroxylation of NDT correlated with that of bufuralol, a CYP2D6 probe substrate, in the human liver microsome panel. In vitro, ADs of the selective serotonin reuptake inhibitor class were, by an order of magnitude, more potent inhibitors of NDT hydroxylation by hCYP2D6 MLMs than were compounds of the tricyclic class. At a clinically relevant dose, paroxetine pretreatment inhibited the generation of endoxifen from NDT in hCYP2D6 mice in vivo. These data demonstrate the potential of ADs to affect endoxifen generation and, thereby, the outcome of tamoxifen therapy

    Implications of genetic variation of common drug metabolizing enzymes and ABC transporters among the Pakistani population

    Get PDF
    Genetic polymorphism of drug metabolizing enzymes and transporters may influence drug response. The frequency varies substantially between ethnicities thus having implications on appropriate selection and dosage of various drugs in different populations. The distribution of genetic polymorphisms in healthy Pakistanis has so far not been described. In this study, 155 healthy adults (98 females) were included from all districts of Karachi. DNA was extracted from saliva and genotyped for relevant SNVs in CYP1A1, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4 and CYP3A5 as well as ALDH3A1, GSTA1, ABCB1 and ABCC2. About 64% of the participants were born to parents who were unrelated to each other. There was generally a higher prevalence (p \u3c 0.05) of variant alleles of CYP450 1A2, 2B6, 2C19, 3A5, ALDH3A1, GSTM1 as well as ABCB1 and ABCC2 in this study cohort than in other ethnicities reported in the HapMap database. In contrast, the prevalence of variant alleles was lower in GSTA1. Therefore, in the Pakistani population sample from Karachi a significantly different prevalence of variant drug metabolizing enzymes and ABC transporters was observed as compared to other ethnicities, which could have putative clinical consequences on drug efficacy and safety

    Expression differences of miR-142-5p between treatment-naïve chronic myeloid leukemia patients responding and non-responding to imatinib therapy suggest a link to oncogenic ABL2, SRI, cKIT and MCL1 signaling pathways critical for development of therapy resistance

    Get PDF
    Background Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by constitutive activity of the tyrosine kinase BCR-ABL1. Although the introduction of tyrosine kinase inhibitors (TKIs) has substantially improved patients' prognosis, drug resistance remains one of the major challenges in CML therapy. MicroRNAs (miRNAs), a class of short non-coding RNAs acting as post-transcriptional regulators, are implicated in CML progression and drug resistance. The aim of the present study was to analyze the miRNA expression profiles of 45 treatment-naïve CML patients in chronic phase (28 peripheral blood and 17 bone marrow samples) with respect to future response to imatinib therapy. Methods TaqMan low density arrays were used to analyze the miRNA expression pattern of the patient samples. For selected microRNAs, reporter gene assays were performed to study their ability to regulate CML associated target genes. Results Significant lower expression levels of miR-142-5p were identified in both, peripheral blood and bone marrow samples of future non-responders suggesting a potential tumor suppressor role of this miRNA. This was supported by reporter gene assays that identified the survival, proliferation and invasion promoting CML related genes ABL2, cKIT, MCL1 and SRI as targets of miR-142-5p and miR-365a-3p, the latter identified as potential biomarker in peripheral blood samples. Conclusion MiR-142-5p and to a certain extend also miR-365a-3p were able to discriminate treatment-naïve CML patients not responding to imatinib in the course of their treatment from patients, who responded to therapy. However, further large-scale studies should clarify if the identified miRNAs have the potential as predictive biomarkers for TKI resistance

    Role of Kozak sequence polymorphism of platelet glycoprotein Ibα as a risk factor for coronary artery disease and catheter interventions

    Get PDF
    AbstractOBJECTIVESWe sought to determine the role of the −5T/C polymorphism of the platelet glycoprotein (GP) Ibα as a potential risk factor for coronary artery disease (CAD) and adverse events complicating a coronary catheter intervention.BACKGROUNDThe platelet GP Ib-IX-V receptor complex plays a crucial role in arterial thrombus formation. The −5T/C polymorphism of GP Ibα is associated with increased receptor density.METHODSWe genotyped 1,000 patients with angiographically confirmed CAD, as well as 1,000 age- and gender-matched control subjects, for this polymorphism by polymerase chain reaction/restriction fragment length polymorphism. Among the patients with CAD, 269 underwent percutaneous transluminal coronary angioplasty (PTCA), 103 underwent directional coronary atherectomy and 278 underwent stenting. This intervention group was followed for a 30-day composite end point of target vessel revascularization, myocardial infarction or death.RESULTSCarriers of the −5C allele were significantly over-represented in the group of patients developing acute coronary syndromes (relative risk [RR] 1.43, 95% confidence interval [CI] 1.05 to 1.95, p = 0.02). The −5C allele furthermore predicted an increased risk for developing complications after PTCA (RR 3.75, 95% CI 1.15 to 12.27, p = 0.029).CONCLUSIONSThe −5C allele of the GP Ibα Kozak polymorphism may represent a risk factor in clinical conditions in which thrombosis plays an important role, such as in acute coronary syndromes and in complications after PTCA

    N-acetyltransferase 2 (NAT2) gene polymorphisms in colon and lung cancer patients

    Get PDF
    BACKGROUND: N-acetyltransferase 2 (NAT2) metabolizes arylamines and hydrazines moeities found in many therapeutic drugs, chemicals and carcinogens. The gene encoding NAT2 is polymorphic, thus resulting in rapid or slow acetylator phenotypes. The acetylator status may, therefore, predispose drug-induced toxicities and cancer risks, such as bladder, colon and lung cancer. Indeed, some studies demonstrate a positive association between NAT2 rapid acetylator phenotype and colon cancer, but results are inconsistent. The role of NAT2 acetylation status in lung cancer is likewise unclear, in which both the rapid and slow acetylator genotypes have been associated with disease. METHODS: We investigated three genetic variations, c.481C>T, c.590G>A (p.R197Q) and c.857G>A (p.G286E), of the NAT2 gene, which are known to result in a slow acetylator phenotype. Using validated PCR-RFLP assays, we genotyped 243 healthy unrelated Caucasian control subjects, 92 colon and 67 lung cancer patients for these genetic variations. As there is a recent meta-analysis of NAT2 studies on colon cancer (unlike in lung cancer), we have also undertaken a systematic review of NAT2 studies on lung cancer, and we incorporated our results in a meta-analysis consisting of 16 studies, 3,865 lung cancer patients and 6,077 control subjects. RESULTS: We did not obtain statistically significant differences in NAT2 allele and genotype frequencies in colon cancer patients and control group. Certain genotypes, however, such as [c.590AA+c.857GA] and [c.590GA+c.857GA] were absent among the colon cancer patients. Similarly, allele frequencies in lung cancer patients and controls did not differ significantly. Nevertheless, there was a significant increase of genotypes [c.590GA] and [c.481CT+c.590GA], but absence of homozygous c.590AA and [c.590AA+c.857GA] in the lung cancer group. Meta-analysis of 16 NAT2 studies on lung cancer did not evidence an overall association of the rapid or slow acetylator status to lung cancer. Similarly, the summary odds ratios obtained with stratified meta-analysis based on ethnicity, and smoking status were not significant. CONCLUSION: Our study failed to show an overall association of NAT2 genotypes to either colon or lung cancer risk

    Benzene Metabolite 1,2,4-Benzenetriol Induces Halogenated DNA and Tyrosines Representing Halogenative Stress in the HL-60 Human Myeloid Cell Line

    Get PDF
    Background: Although benzene is known to be myelotoxic and to cause myeloid leukemia in humans, the mechanism has not been elucidated

    Acetylation genotype and the genetic susceptibility to postate cancer in a Southern European population

    Get PDF
    Epidemiologic studies have suggested that environmental factors and diet are important risk factors in the pathogenesis of prostate cancer. The N-acetyltransferases (NAT) are important enzymes in activation and inactivation of various carcinogens, including those found in well-cooked meat and cigarette smoke. METHODS. We analyzed DNA samples from 146 prostate cancer patients and 174 healthy men. We used PCR–RFLP method to analyze NAT1 and NAT2 polymorphisms. RESULTS. We did not find statistically significant differences in NAT1 genotypes frequencies between prostate cancer patients and control group. We observed an association of the slow acetylator genotype, NAT2*6/NAT2*6 with prostate cancer protection (P¼0.017;OR¼0.31, 95% CI 0.11–0.84). Multivariate logistic regression analysis confirmed this association (0.030; OR¼0.32, 95% CI 0.12–0.89). CONCLUSIONS. Our results indicate a role of NAT2 polymorphisms in the carcinogenic pathway of prostate cancer, specifically in a population of Southern Europe

    Substrate-specific effects of pirinixic acid derivatives on ABCB1-mediated drug transport

    Get PDF
    Pirinixic acid derivatives, a new class of drug candidates for a range of diseases, interfere with targets including PPARα, PPARγ, 5-lipoxygenase (5-LO), and microsomal prostaglandin and E2 synthase-1 (mPGES1). Since 5-LO, mPGES1, PPARα, and PPARγ represent potential anti-cancer drug targets, we here investigated the effects of 39 pirinixic acid derivatives on prostate cancer (PC-3) and neuroblastoma (UKF-NB-3) cell viability and, subsequently, the effects of selected compounds on drug-resistant neuroblastoma cells. Few compounds affected cancer cell viability in low micromolar concentrations but there was no correlation between the anti-cancer effects and the effects on 5-LO, mPGES1, PPARα, or PPARγ. Most strikingly, pirinixic acid derivatives interfered with drug transport by the ATP-binding cassette (ABC) transporter ABCB1 in a drug-specific fashion. LP117, the compound that exerted the strongest effect on ABCB1, interfered in the investigated concentrations of up to 2μM with the ABCB1-mediated transport of vincristine, vinorelbine, actinomycin D, paclitaxel, and calcein- AM but not of doxorubicin, rhodamine 123, or JC-1. In silico docking studies identified differences in the interaction profiles of the investigated ABCB1 substrates with the known ABCB1 binding sites that may explain the substrate-specific effects of LP117. Thus, pirinixic acid derivatives may offer potential as drug-specific modulators of ABCB1-mediated drug transport

    Novel insertion mutation of ABCB1 gene in an ivermectin-sensitive Border Collie

    Get PDF
    P-glycoprotein (P-gp) is encoded by the ABCB1 gene and acts as an efflux pump for xenobiotics. In the Border Collie, a nonsense mutation caused by a 4-base pair deletion in the ABCB1 gene is associated with a premature stop to P-gp synthesis. In this study, we examined the full-length coding sequence of the ABCB1 gene in an ivermectin-sensitive Border Collie that lacked the aforementioned deletion mutation. The sequence was compared to the corresponding sequences of a wild-type Beagle and seven ivermectin-tolerant family members of the Border Collie. When compared to the wild-type Beagle sequence, that of the ivermectin-sensitive Border Collie was found to have one insertion mutation and eight single nucleotide polymorphisms (SNPs) in the coding sequence of the ABCB1 gene. While the eight SNPs were also found in the family members' sequences, the insertion mutation was found only in the ivermectin-sensitive dog. These results suggest the possibility that the SNPs are species-specific features of the ABCB1 gene in Border Collies, and that the insertion mutation may be related to ivermectin intolerance

    Association between Genetic Polymorphism of Multidrug Resistance 1 Gene and Sasang Constitutions

    Get PDF
    Multidrug resistance 1 (MDR1) is a gene that expresses P-glycoprotein (P-gp), a drug transporter protein. Genetic polymorphisms of MDR1 can be associated with Sasang constitutions because Sasang constitutional medicine (SCM) prescribes different drugs according to different constitutions. A Questionnaire for Sasang Constitution Classification II (QSCC II) was used to diagnose Sasang constitutions. Two hundred and seven healthy people whose Sasang constitutions had been identified were tested. Genotype analyses, restriction fragment length polymorphism (RFLP) and pyrosequencing were used in MDR1 C1236T, and in MDR1 G2677T/A and C3435T, respectively. Significant differences in MDR1 C1236T genotypes were found between So-yangin and So-eumin. MDR1 G2677T/A genotype also showed significant differences in allele distribution between So-yangin and Tae-eumin. So-yangin and So-eumin showed significant differences in the distribution of both 1236C-2677G-3435C and 1236T-2677G-3435T, haplotypes of MDR1. The genetic polymorphism of the MDR1 gene was thus shown to be an indicator that could distinguish So-yangin from other constitutions
    • …
    corecore