10 research outputs found

    Drosophila TNF modulates tissue tension in the embryo to facilitate macrophage invasive migration

    Get PDF
    Migrating cells penetrate tissue barriers during development, inflammatory responses, and tumor metastasis. We study if migration in vivo in such three-dimensionally confined environments requires changes in the mechanical properties of the surrounding cells using embryonic Drosophila melanogaster hemocytes, also called macrophages, as a model. We find that macrophage invasion into the germband through transient separation of the apposing ectoderm and mesoderm requires cell deformations and reductions in apical tension in the ectoderm. Interestingly, the genetic pathway governing these mechanical shifts acts downstream of the only known tumor necrosis factor superfamily member in Drosophila, Eiger, and its receptor, Grindelwald. Eiger-Grindelwald signaling reduces levels of active Myosin in the germband ectodermal cortex through the localization of a Crumbs complex component, Patj (Pals-1-associated tight junction protein). We therefore elucidate a distinct molecular pathway that controls tissue tension and demonstrate the importance of such regulation for invasive migration in vivo

    Microglia: Multitasking Specialists of the Brain

    Get PDF
    Microglia are macrophages that colonize the brain during development to establish a resident population of professional phagocytes that protect against invading pathogens and contribute to brain development and homeostasis. As such, these cells sit at the interface between immunology and neurobiology. In addition to their key roles in brain physiology, microglia offer a great opportunity to address central questions in biology relating to how migrating cells find their positions in the embryo, adopt a behavior that is appropriate for that position, and interact with their local environment. We aim, in this review, to survey key recent advances in microglial research

    Developmental Apoptosis Mediates Entry and Positioning of Microglia in the Zebrafish Brain

    Get PDF
    In the brain, neurons that fail to assemble into functional circuits are eliminated. Their clearance depends on microglia, immune cells that colonize the CNS during embryogenesis. Despite the importance of these cells in development and disease, the mechanisms that target and position microglia within the brain are unclear. Here we show that, in zebrafish, attraction of microglia into the brain exploits differences in developmental neuronal apoptosis and that these provide a mechanism for microglial distribution. Reducing neuronal cell death results in fewer microglia, whereas increased apoptosis enhances brain colonization, resulting in more microglia at later stages. Interestingly, attraction into the brain depends on nucleotide signaling, the same signaling system used to guide microglia toward brain injuries. Finally, this work uncovers a cell-non-autonomous role for developmental apoptosis. Classically considered a wasteful process, programmed cell death is exploited here to configure the immune-neuronal interface of the brain

    The SLC7A7 Transporter Identifies Microglial Precursors prior to Entry into the Brain

    Get PDF
    During development, macrophages invade organs to establish phenotypically and transcriptionally distinct tissue-resident populations. How they invade and colonize these organs is unclear. In particular, it remains to be established whether they arise from naive equivalents that colonize organs randomly or whether there are committed macrophages that follow pre-determined migration paths. Here, by using a combination of genetics and imaging approaches in the zebrafish embryo, we have addressed how macrophages colonize the brain to become microglia. Identification and cloning of a mutant that lacks microglia has shown that Slc7a7, a Leucine/Arginine transporter, defines a restricted macrophage sub-lineage and is necessary for brain colonization. By taking a photoconversion approach, we show that these macrophages give rise to microglia. This study provides direct experimental evidence for the existence of sub-lineages among embryonic macrophages

    Developmental Apoptosis Mediates Entry and Positioning of Microglia in the Zebrafish Brain

    Get PDF
    In the brain, neurons that fail to assemble into functional circuits are eliminated. Their clearance depends on microglia, immune cells that colonize the CNS during embryogenesis. Despite the importance of these cells in development and disease, the mechanisms that target and position microglia within the brain are unclear. Here we show that, in zebrafish, attraction of microglia into the brain exploits differences in developmental neuronal apoptosis and that these provide a mechanism for microglial distribution. Reducing neuronal cell death results in fewer microglia, whereas increased apoptosis enhances brain colonization, resulting in more microglia at later stages. Interestingly, attraction into the brain depends on nucleotide signaling, the same signaling system used to guide microglia toward brain injuries. Finally, this work uncovers a cell-non-autonomous role for developmental apoptosis. Classically considered a wasteful process, programmed cell death is exploited here to configure the immune-neuronal interface of the brain

    The SLC7A7 Transporter Identifies Microglial Precursors prior to Entry into the Brain

    Get PDF
    During development, macrophages invade organs to establish phenotypically and transcriptionally distinct tissue-resident populations. How they invade and colonize these organs is unclear. In particular, it remains to be established whether they arise from naive equivalents that colonize organs randomly or whether there are committed macrophages that follow pre-determined migration paths. Here, by using a combination of genetics and imaging approaches in the zebrafish embryo, we have addressed how macrophages colonize the brain to become microglia. Identification and cloning of a mutant that lacks microglia has shown that Slc7a7, a Leucine/Arginine transporter, defines a restricted macrophage sub-lineage and is necessary for brain colonization. By taking a photoconversion approach, we show that these macrophages give rise to microglia. This study provides direct experimental evidence for the existence of sub-lineages among embryonic macrophages

    Adapted Physical Activity for the Promotion of Health and the Prevention of Multifactorial Chronic Diseases: the Erice Charter

    No full text
    The Erice Charter was unanimously approved at the conclusion of the 47th Residential Course "Adapted Physical Activity in Sport, Wellness and Fitness: New Challenges for Prevention and Health Promotion", held on 20-24 April 2015 in Erice, Italy, at the "Ettore Majorana" Foundation and Centre for Scientific Culture, and promoted by the International School of Epidemiology and Preventive Medicine "G. D'Alessandro" and the Study Group on Movement Sciences for Health of the Italian Society of Hygiene, Preventive Medicine and Public Health. After an intense discussion the participants identified the main points associated with the relevance of physical activity for Public Health, claiming the pivotal role of the Department of Prevention in coordinating and managing preventive actions. The participants underlined the importance of the physicians specialized in Hygiene, Preventive Medicine and Public Health. The contribution of other operators such as physicians specialized in Sport Medicine was stressed. Further, the holders of the new degree in Human Movement and Sport Sciences were considered fundamental contributors for the performance of physical activity and their presence was seen as a promising opportunity for the Departments of Prevention. Primary prevention based on recreational physical activities should become easily accessible for the population, avoiding obstacles such as certification steps or complex bureaucracy. The Sport Doctor is recognized as the principal referent for preliminary physical evaluation and clinical monitoring in secondary and tertiary prevention actions based on adapted physical activities. Developing research in the field is essential as well as implementing higher education on physical activity management in Schools of Public Health

    Risk of Guillain-Barr\ue9 syndrome after 2010-2011 influenza vaccination

    No full text
    Influenza vaccination has been implicated in Guillain Barr\ue9 Syndrome (GBS) although the evidence for this link is controversial. A case-control study was conducted between October 2010 and May 2011 in seven Italian Regions to explore the relation between influenza vaccination and GBS. The study included 176 GBS incident cases aged 6518 years from 86 neurological centers. Controls were selected among patients admitted for acute conditions to the Emergency Department of the same hospital as cases. Each control was matched to a case by sex, age, Region and admission date. Two different analyses were conducted: a matched case-control analysis and a self-controlled case series analysis (SCCS). Case-control analysis included 140 cases matched to 308 controls. The adjusted matched odds ratio (OR) for GBS occurrence within 6 weeks after influenza vaccination was 3.8 (95 % CI: 1.3, 10.5). A much stronger association with gastrointestinal infections (OR = 23.8; 95 % CI 7.3, 77.6) and influenza-like illness or upper respiratory tract infections (OR = 11.5; 95 % CI 5.6, 23.5) was highlighted. The SCCS analysis included all 176 GBS cases. Influenza vaccination was associated with GBS, with a relative risk of 2.1 (95 % CI 1.1, 3.9). According to these results the attributable risk in adults ranges from two to five GBS cases per 1,000,000 vaccinations
    corecore