875 research outputs found

    Stochastic gauges in quantum dynamics for many-body simulations

    Get PDF
    Quantum dynamics simulations can be improved using novel quasiprobability distributions based on non-orthogonal hermitian kernel operators. This introduces arbitrary functions (gauges) into the stochastic equations, which can be used to tailor them for improved calculations. A possible application to full quantum dynamic simulations of BEC's is presented.Comment: 4 pages, 2 figure

    Slowing rates of regional exhumation in the western Himalaya: fission track evidence from the Indus Fan

    Get PDF
    Weuse apatite fission track ages from sediments recovered by the International Ocean Discovery Program in the Laxmi Basin, Arabian Sea, to constrain exhumation rates in the western Himalaya and Karakoram since 15.5 Ma. With the exception of a Triassic population in the youngest 0.93 Ma samples supplied from western Peninsular India, apatite fission track ages are overwhelmingly Cenozoic, largely <25 Ma, consistent with both a Himalaya–Karakoram source and rapid erosion. Comparison of the minimum cooling age of each sample with depositional age (lag time) indicates an acceleration in exhumation between 7.8 and 7.0 Ma, with lag times shortening from ∌6.0 Myr at 8.5–7.8 Ma to being within error of zero between 7.0 and 5.7 Ma. Sediment supply at 7.0–5.7 Mawas largely from the Karakoram, and to a lesser extent the Himalaya, based on U–Pb zircon ages from the same samples. This time coincides with a period of drying in the Himalayan foreland caused by weaker summermonsoons andWesterly winds. It also correlates with a shift of erosion away from the Karakoram, Kohistan and the Tethyan Himalaya towards more erosion of the Lesser and Greater Himalaya and Nanga Parbat, as shown by zircon U–Pb provenance data, and especially after 5.7 Ma based on Nd isotope data. Samples younger than 5.7 Ma have lag times of ∌4.5 Myr, similar to Holocene Indus delta sediments

    Classical Boundary-value Problem in Riemannian Quantum Gravity and Self-dual Taub-NUT-(anti)de Sitter Geometries

    Full text link
    The classical boundary-value problem of the Einstein field equations is studied with an arbitrary cosmological constant, in the case of a compact (S3S^{3}) boundary given a biaxial Bianchi-IX positive-definite three-metric, specified by two radii (a,b).(a,b). For the simplest, four-ball, topology of the manifold with this boundary, the regular classical solutions are found within the family of Taub-NUT-(anti)de Sitter metrics with self-dual Weyl curvature. For arbitrary choice of positive radii (a,b),(a,b), we find that there are three solutions for the infilling geometry of this type. We obtain exact solutions for them and for their Euclidean actions. The case of negative cosmological constant is investigated further. For reasonable squashing of the three-sphere, all three infilling solutions have real-valued actions which possess a ``cusp catastrophe'' structure with a non-self-intersecting ``catastrophe manifold'' implying that the dominant contribution comes from the unique real positive-definite solution on the ball. The positive-definite solution exists even for larger deformations of the three-sphere, as long as a certain inequality between aa and bb holds. The action of this solution is proportional to −a3-a^{3} for large a(∌b)a (\sim b) and hence larger radii are favoured. The same boundary-value problem with more complicated interior topology containing a ``bolt'' is investigated in a forthcoming paper.Comment: 20 pages, 11 figures; Latex; Revised version with important new results on real infilling solutions and corrections. To appear in Nuclear Physics B, issue 648 (1,2), pp. 397-41

    Climate and anthropogenic impacts on North American erosion and sediment transport since the Last Glacial Maximum: evidence from the detrital zircon record of the Lower Mississippi Valley, USA

    Get PDF
    The Mississippi River provides an opportunity to examine models of sediment transport in large alluviated floodplain systems. We test the idea that sources of sandy sediment in such settings are invariable on timescales <104 y because of storage and recycling in the floodplains. To reconstruct the development of the Mississippi sediment load over the past 2500 years we collected sediment from an abandoned point bar complex nearby at False River, Louisiana, USA. We also took annual samples from the lower reaches between 2015 and 2021 to assess changes on that timescale. Optically stimulated luminescence dating indicated that the point bar accreted between 2460 and 860 years ago. Detrital zircon U-Pb dating was used to assess sediment source and variability over time. We confirm a dominant sediment flux from the Rocky Mountain foreland but with higher relative erosion from the Superior Province during the Last Glacial Maximum (LGM) based on existing data from the Gulf of Mexico. There have been resolvable changes in the sources of sediment particularly since the LGM and after 860 years ago, but also over shorter, even sub-annual timescales in the recent past. These changes may reflect seasonal weather or storm events in the headwater regions and imply limited floodplain buffering of the sand load. In recent times this may reflect the installation of levees in the lower reaches, suppressing reworking. Changes over 102–103 y time periods may be related to changes in climate (e.g., the Medieval and Roman warm periods) and to the development of agriculture across North America after ~2000 years ago. Detrital zircon dating is an effective provenance tool and does not appear to be strongly biased by the grain size of the sediment in this setting

    Controls on erosion patterns and sediment transport in a monsoonal, tectonically quiescent drainage, Song Gianh, central Vietnam

    Get PDF
    The Song Gianh is a small-sized (~3500 km2), monsoon-dominated river in northern central Vietnam that can be used to understand how topography and climate control continental erosion. We present major element concentrations, together with Sr and Nd isotopic compositions, of siliciclastic bulk sediments to define sediment provenance and chemical weathering intensity. These data indicate preferential sediment generation in the steep, wetter upper reaches of the Song Gianh. In contrast, detrital zircon U-Pb ages argue for significant flux from the drier, northern Rao Tro tributary. We propose that this mismatch represents disequilibrium in basin erosion patterns driven by changing monsoon strength and the onset of agriculture across the region. Detrital apatite fission track and 10Be data from modern sediment support slowing of regional bedrock exhumation rates through the Cenozoic. If the Song Gianh is representative of coastal Vietnam then the coastal mountains may have produced around 132 000–158 000 km3 of the sediment now preserved in the Song Hong-Yinggehai Basin (17–21 of the total), the primary depocenter of the Red River. This flux does not negate the need for drainage capture in the Red River to explain the large Cenozoic sediment volumes in that basin but does partly account for the discrepancy between preserved and eroded sediment volumes. OSL ages from terraces cluster in the Early Holocene (7.4–8.5 ka), Pre-Industrial (550–320 year BP) and in the recent past (ca. 150 year BP). The older terraces reflect high sediment production driven by a strong monsoon, whereas the younger are the product of anthropogenic impact on the landscape caused by farming. Modern river sediment is consistently more weathered than terrace sediment consistent with reworking of old weathered soils by agricultural disruption

    Climatic and glacial impact on erosion patterns and sediment provenance in the Himalayan rain shadow, Zanskar River, NW India

    Get PDF
    Erosion is a key step in the destruction and recycling of the continental crust yet its primary drivers continue to be debated. The relative balance between climatic and solid Earth forces in determining erosion patterns and rates, and in turn orogenic architecture, is unresolved. The monsoon-dominated frontal Himalaya is a classic example of how surface processes may drive focused denudation and potentially control structural evolution. We investigate whether there is a clear relationship between climate and erosion in the drier Himalayan rain shadow of northwest India where a coupled climate-erosion relationship is less clear. We present a new integrated dataset combining bulk petrography, geomorphometric analysis, detrital U-Pb zircon geochronology, and bulk Nd and Sr isotope geochemistry from modern river sediments that provides constraints on spatial patterns of sediment production and transport in the Zanskar River. Zanskar River sands are dominated by Greater Himalayan detritus sourced from the glaciated Stod River catchment that represents only 13% of the total basin area. Prevalent zircon peaks from the Cambro-Ordovician (440–500 Ma) and Mississippian-Permian (245–380 Ma) indicate more abundant pre-Himalayan granitoids in the northwest Himalaya than in the central and eastern Himalaya. Erosion from the widely-exposed Tethyan Himalaya, however, appears modest. Spatial patterns of erosion do not correlate with highest channel steepness. Our data demonstrate that Zanskar differs from the monsoon-soaked frontal Himalaya and the arid, extremely slow-eroding orogenic interior in that focused erosion and sediment production are driven by glaciers. Subsequent remobilization of glacially-derived sediments is likely controlled by monsoonal rainfall and we suggest sediment reworking plays an important role. These data support strong climatic control on modern orogenic erosion on the periphery of the Himalayan rain shadow

    Moving the Needle Toward Fair Compensation in Pediatric Nephrology

    Get PDF
    Remuneration issues are a substantial threat to the long-term stability of the pediatric nephrology workforce. It is uncertain whether the pediatric nephrology workforce will meet the growing needs of children with kidney disease without a substantial overhaul of the current reimbursement policies. In contrast to adult nephrology, the majority of pediatric nephrologists practice in an academic setting affiliated with a university and/or children's hospital. The pediatric nephrology service line is crucial to maintaining the financial health and wellness of a comprehensive children's hospital. However, in the current fee-for-service system, the clinical care for children with kidney disease is neither sufficiently valued, nor appropriately compensated. Current compensation models derived from the relative value unit (RVU) system contribute to the structural biases inherent in the current inequitable payment system. The perceived negative financial compensation is a significant driver of waning trainee interest in the field which is one of the least attractive specialties for students, with a significant proportion of training spots going unfilled each year and relatively stagnant growth rate as compared to the other pediatric subspecialties. This article reviews the current state of financial compensation issues plaguing the pediatric nephrology subspecialty. We further outline strategies for pediatric nephrologists, hospital administrators, and policy-makers to improve the landscape of financial reimbursement to pediatric subspecialists. A physician compensation model is proposed which aligns clinical activity with alternate metrics for current non-RVU producing activities that harmonizes hospital and personal mission statements

    Variational Approach to the Modulational Instability

    Full text link
    We study the modulational stability of the nonlinear Schr\"odinger equation (NLS) using a time-dependent variational approach. Within this framework, we derive ordinary differential equations (ODEs) for the time evolution of the amplitude and phase of modulational perturbations. Analyzing the ensuing ODEs, we re-derive the classical modulational instability criterion. The case (relevant to applications in optics and Bose-Einstein condensation) where the coefficients of the equation are time-dependent, is also examined

    Gaussian quantum operator representation for bosons

    Get PDF
    We introduce a Gaussian quantum operator representation, using the most general possible multimode Gaussian operator basis. The representation unifies and substantially extends existing phase-space representations of density matrices for Bose systems and also includes generalized squeezed-state and thermal bases. It enables first-principles dynamical or equilibrium calculations in quantum many-body systems, with quantum uncertainties appearing as dynamical objects. Any quadratic Liouville equation for the density operator results in a purely deterministic time evolution. Any cubic or quartic master equation can be treated using stochastic methods
    • 

    corecore