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ABSTRACT  

Erosion is a key step in the destruction and recycling of the continental crust yet its 

primary drivers continue to be debated. The relative balance between climatic and solid Earth 
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forces in determining erosion patterns and rates, and in turn orogenic architecture, is unresolved. 

The monsoon-dominated frontal Himalaya is a classic example of how surface processes may 

drive focused denudation and potentially control structural evolution. We investigate whether 

there is a clear relationship between climate and erosion in the drier Himalayan rain shadow of 

northwest India where a coupled climate-erosion relationship is less clear. We present a new 

integrated dataset combining bulk petrography, geomorphometric analysis, detrital U-Pb zircon 

geochronology, and bulk Nd and Sr isotope geochemistry from modern river sediments that 

provides constraints on spatial patterns of sediment production and transport in the Zanskar 

River. Zanskar River sands are dominated by Greater Himalayan detritus sourced from the 

glaciated Stod River catchment that represents only 13% of the total basin area. Prevalent zircon 

peaks from the Cambro-Ordovician (440–500 Ma) and Mississippian-Permian (245–380 Ma) 

indicate more abundant pre-Himalayan granitoids in the northwest Himalaya than in the central 

and eastern Himalaya. Erosion from the widely-exposed Tethyan Himalaya, however, appears 

modest. Spatial patterns of erosion do not correlate with highest channel steepness. Our data 

demonstrate that Zanskar differs from the monsoon-soaked frontal Himalaya and the arid, 

extremely slow-eroding orogenic interior in that focused erosion and sediment production are 

driven by glaciers. Subsequent remobilization of glacially-derived sediments is likely controlled 

by monsoonal rainfall and we suggest sediment reworking plays an important role. These data 

support strong climatic control on modern orogenic erosion on the periphery of the Himalayan 

rain shadow.  

 

INTRODUCTION  
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The growth and destruction of orogenic systems are governed by the distribution and 

pace of tectonically driven rock uplift and surface processes. Solid Earth and climatic forces 

together facilitate denudation that in turn regulates the flux and composition of sediments 

recycled through rivers to the oceans. How the magnitude of these forces and their resultant 

erosion shape orogens is debated. Many studies argue for strongly linked climate-precipitation 

and focused erosion (e.g., Beaumont et al., 2001; Clift et al., 2008; Hodges et al., 2004; Kirby 

and Ouimet, 2011; Thiede et al., 2004) while others favor a decisive solid Earth control (Burbank 

et al., 2003; Wallis et al., 2016). Constraining the roles of these processes is crucial in 

quantifying how sedimentation reflects tectonic and climatic conditions. If we are to relate 

exhumation and paleoenvironmental histories from long denuded mountain belts then analysis of 

the sedimentary record provides the only method to reconstruct these processes in relative 

continuity over long periods of geologic time.  

The dramatic topographic and climatic gradients of the Himalaya-Tibetan orogen provide 

the opportunity to assess the interdependency between tectonics, climate, and surface processes. 

Intense summer monsoonal rainfall on the southern flank of the Himalaya produces extreme 

erosion, steep topographic relief (Bookhagen and Burbank, 2006; Bookhagen et al., 2005b; 

Gabet et al., 2008) and some of the highest riverine fluxes of sediment to the ocean (Milliman 

and Meade, 1983). Erosion patterns in river basins across the wet, frontal Himalaya, like the 

Marsyandi (e.g, Attal and Lavé, 2006; Garzanti et al., 2007), Sutlej (Bookhagen and Burbank, 

2006), and Alaknanda Rivers (Srivastava et al., 2008) tightly correlate with the distribution and 

intensity of monsoon precipitation (Fig. 1). Moreover, focused erosion on the Himalayan front 

has been proposed to control the distribution of deep exhumation and tectonic strain (e.g, 

Beaumont et al., 2001; Thiede et al., 2004).  
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How erosion is facilitated by climatic processes is less clear farther north in the 

Himalayan rain shadow, where high topography impedes northward advection of monsoonal 

moisture onto the Tibetan Plateau. Arid regions north of the Indus River in Ladakh and the 

Karakorum show exhumation rates scale with tectonically generated topography and glacial 

cover rather than with precipitation as found along the Himalayan front (Dortch et al., 2011a; 

Munack et al., 2014; Wallis et al., 2016). Despite this apparent lack of correlation between 

precipitation and erosion, some observations suggest the Himalayan rain shadow may be 

especially sensitive to climatic perturbations. Intense summer rainstorms have resulted in modern 

day examples of extreme erosion (i.e., (Hobley et al., 2012) and suggest that volumetrically large 

sediment signals (>60% total flux) can be produced by only a few events (Bookhagen et al., 

2005a; Wulf et al., 2010; Wulf et al., 2012). However, whether this is geologically important was 

questioned by Munack et al. (2014) who showed that the long-term denudation derived from 

10Be cosmogenic isotopes is consistent amongst samples both before and after the intensive 

climatic events of the summer 2010 in Ladakh. 

Here we examine whether precipitation, glaciation, or rock uplift dominate in controlling 

modern erosion on the western margin of the Tibetan Plateau in the Zanskar River basin. This 

river is ideally situated for evaluating coupling between climate and erosion because it is the 

largest river basin in the Himalayan rain shadow draining the High Himalaya towards the north, 

directly into the trunk Indus River. Our investigation sets out to quantify sediment provenance in 

the Zanskar River basin to establish the modern relative spatial distributions of erosion, or 

erosion patterns. We further explore whether climate modulates sediment production and 

transport in the rain shadow as it does in the frontal ranges, or if present-day erosion instead 

reflects strong, underlying tectonic control.  
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BACKGROUND 

Climatic and Geographic Setting  

The Zanskar River basin lies directly north of the Himalayan topographic divide on the 

southern edge of the Tibetan Plateau and occupies a modern drainage area of 14,939 km2 (Fig. 

1). All material sourced from the Zanskar River basin transmits to the Indus River, the main river 

system routing water and sediment from the western Himalaya into the Arabian Sea for roughly 

the last ~45 m.y. (Clift et al., 2001). The broader Zanskar River basin can be subdivided into five 

catchments of the main tributaries: the Tsarap, Stod, Khurna, Markha, and Oma Rivers (Fig. 1C).  

Glaciers occupy 8% of the Zanskar River basin, with some glacial tongues extending as 

low as ~4100 m (Owen, 2011; Taylor and Mitchell, 2000). Recessional and terminal moraines 

are preserved throughout Zanskar. Although glaciers were not much more widespread at the Last 

Glacial Maximum (~20 ka), older glaciations were quite extensive (Dortch et al., 2011a; Dortch 

et al., 2013; Hedrick et al., 2011; Owen et al., 2005). One terminal moraine dated to ~78 ka 

extended as low as ~3400 m to create the Padum Basin, which is a key confluence within the 

Zanskar catchment (Owen et al., 2002; Taylor and Mitchell, 2000).   

Precipitation is delivered by the Summer Monsoon and Winter Western Disturbances 

(Westerlies) as rainfall in the summer (Jun–Aug) and snowfall in the winter, respectively (Owen 

and Benn, 2005). Dramatic attenuation of monsoonal precipitation across the topographic barrier 

of the High Himalaya produces a rain shadow to the north in the orogenic interior (Fig. 2). 

Likewise, a gradient is observed for Westerly-derived precipitation that decreases considerably 

to the southeast across this region (Leipe et al., 2014). Sutlej River basin weather station and 

hydrologic modelling data imply that 30–50% of the total annual precipitation to upper Indus 
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River tributaries is received as winter snowfall, and contributes as much as ~66% of the total 

yearly discharge as snow or glacial meltwater (Bookhagen and Burbank, 2010; Burbank et al., 

2012).  

Modern erosion rates in the frontal Himalaya are tightly coupled with monsoonal rainfall and 

discharge (e.g., Bookhagen, 2010; Gabet et al., 2008; Goodbred, 2003). Overall annual sediment 

fluxes from arid rain shadow regions, like the drier upper drainages of the Indus, Sutlej, and 

Marsyandi River basins (Fig. 1B), are lower because of lower runoff. In the upper Marsyandi and 

Sutlej Rivers, highest suspended sediment yields occur during late summer when temperatures 

are highest rather than at the onset of monsoon season (Burbank et al., 2012; Wulf et al., 2012). 

This suggests that subglacial drainage channels provide the initial flux, with progressively 

increasing contributions from hillslopes and river channels as summer monsoon rainfall arrives 

(e.g., Bookhagen and Burbank, 2010). Despite lower annual precipitation, high intensity 

monsoonal rainstorms can produce extreme erosion and, in only a few events, produce 30–50% 

of the total annual sediment flux in semi-arid to arid regions (Wulf et al., 2010; Wulf et al., 

2012). These observations suggest, that at least under modern day climatic conditions, regions 

directly adjacent to the present rainfall maxima shadow potentially produce disproportionate 

sediment signals during such events (Bookhagen, 2010).  

 

Geologic Setting  

Basement rocks exposed in Zanskar can be divided into three lithotectonic groups: (1) the 

Tethyan Sedimentary Sequence, or Tethyan Himalaya; (2) the High Himalayan Crystalline 

Sequence, or Greater Himalaya; and (3) the Indus Suture Zone (Fig. 3). Exposures of these 

groups are structurally controlled by orogen parallel structures related to SW-verging thrust 
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nappes and the Zanskar Shear Zone (ZSZ)(Dèzes et al., 1999). The ZSZ represents a ~150 km 

long strand of the South Tibetan Detachment (Herren, 1987), the major tectonic boundary that 

separates the Greater and Tethyan Himalaya in this part of the orogen (Burchfiel et al., 1992; 

Burchfiel and Royden, 1985).  

The Tethyan Himalaya is a package of Neoproterozoic to early Paleocene sandstones, 

limestones, dolostones, and shales classically considered to have been deposited as a passive 

margin sequence on the northern margin of Greater India (Gaetani et al., 1986; Gaetani et al., 

1983; Garzanti et al., 1986; Green et al., 2008). Tethyan Himalayan rocks are very low- to low-

grade metasedimentary rocks, although parallel to the ZSZ and Nyimaling-Tso Morari gneiss 

dome Neoproterozoic-Ordovician formations locally reach lower amphibolite facies (e.g., Dèzes 

et al., 1999; Fuchs, 1987; Gaetani et al., 1986; Steck, 1993).  

Paleozoic magmatism produced two igneous suites observed in the Zanskar region: (1) 

Pan-African Cambro-Ordovician granitic plutons and (2) Mississippian-Permian granitic plutons 

associated with Panjal Traps flood basalts. U-Pb zircon ages constrain Pan-African (or 

Bhimphedian) Orogeny plutonism from ~435 to ~483 Ma (Cawood et al., 2007; Girard and 

Bussy, 1999; Godin, 2001; Horton and Leech, 2013; Noble and Searle, 1995; Pognante et al., 

1990). Later Gondwanan rifting produced isolated granitic plutons dating 268–305 Ma (Horton 

and Leech, 2013; Noble et al., 2001; Spring et al., 1993) as well as Panjal Traps flood basalts at 

~289 Ma (Shellnutt et al., 2011; Shellnutt et al., 2014; Singh et al., 1976).  

Structurally below the Tethyan Himalaya and forming the core of the High Himalaya in 

Zanskar are the exhumed high-grade equivalents of the Neoproterozoic-Ordovician Tethyan 

Himalaya and late Paleozoic granitic intrusions, collectively referred to as the Greater Himalaya 

(Dèzes et al., 1999; Honegger, 1983; Horton and Leech, 2013; Pognante et al., 1990; Pognante 
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and Lombardo, 1989; Schlup et al., 2003; Schlup et al., 2011; Searle et al., 1992; Walker et al., 

2001). The Greater Himalaya in Zanskar consists of amphibolite to lower granulite facies 

Neoproterozoic-early Cambrian paragneiss and metapelite (Herren, 1987), Cambro-Ordovician 

orthogneiss (Frank et al., 1977; Horton et al., 2015; Mehta, 1977; Noble and Searle, 1995; 

Pognante et al., 1990; Stutz and Thöni, 1987; Walker et al., 1999) and Mississippian-Permian 

orthogneiss (Honegger et al., 1982; Horton and Leech, 2013; Noble et al., 2001; Spring et al., 

1993).  

Rapid exhumation of the Greater Himalaya between the Main Central Thrust (MCT) and 

ZSZ from 26 Ma (Robyr et al., 2006) to ~17 Ma (Leloup et al., 2010) induced partial melting and 

injection of leucogranitic melts into the Greater and lower Tethyan Himalayan series (Dèzes et 

al., 1999; Noble and Searle, 1995; Robyr et al., 2006). Exhumation of Greater Himalayan 

material continued until ~16 Ma in the south of Zanskar to ~8 Ma around the Nyimaling-Tso 

Morari gneiss dome (Schlup et al., 2003; Schlup et al., 2011). No significant neotectonic activity 

in the Zanskar region is observed (Jade et al., 2010). 

Sedimentation related to the collision of Greater India and Eurasia is documented in the 

third lithotectonic group, the Indus Suture Zone (e.g., Searle, 1983; Searle et al., 1990). Thrust 

slices of ophiolitic mélange, Indus Molasse sandstones, and Cretaceous-Eocene forearc basin 

strata are exposed near the Zanskar-Indus confluence (Clift et al., 2002a; Henderson et al., 2010; 

Pedersen et al., 2001; Searle et al., 1990). 

 

METHODS 

 We use several complementary methods to constrain the provenance of modern sediment 

in the Zanskar River and understand how bulk sediment compositions evolve downstream before 
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reaching the Indus River confluence. Sediment samples from the Zanskar River and its major 

tributaries were collected from 2012 to 2014 during monsoon seasons from active channel beds 

and point bars (Table 1). We preferentially sampled very fine- to medium sand (>63 µm) because 

this size fraction is commonly targeted for single-grain mineral provenance techniques that often 

limit evaluation of finer grain sizes owing to analytical spot size. By only targeting the bedload 

we cannot consider how suspended load contributes to provenance and this introduce biases to 

our analyses (Garzanti et al., 2011; Garzanti et al., 2009). However, we argue that our selected 

size fraction can be considered representative of the bulk zircon provenance (Yang et al., 2012) 

and provide important initial constraints on patterns of erosion in the Zanskar River basin.  

 

Basin Morphology  

 We evaluated basin-wide and river channel morphology by extracting topographic 

parameters and longitudinal river profile data from digital elevation models. Topographic 

parameters were generated from the void-filled Shuttle Radar Topography Mission (SRTM) V4 

90-m digital elevation model (Jarvis et al., 2008) provided by the Consultative Group on 

International Agricultural Research (http://srtm.csi.cgiar.org) and post-processed with an 

iterative fill routine (Whipple et al., 2007). Slope values were calculated using a 1 km-radius 

circular moving window. Local relief, expressed as maximum elevation difference, was 

calculated using a 5 km-radius circular moving window. Mean annual rainfall values were 

generated from the 1998–2009 Tropical Rainfall Measuring Mission (TRMM) 2B31 and 2B42 

data products for the Himalaya (Bookhagen and Burbank, 2010). Extent of modern glaciers in 

the Zanskar River basin were derived from the Global Land Ice Measurements from Space 

(GLIMS) Version 1 data (Shrestha et al., 2014).  
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 Longitudinal river profiles were generated from digital elevation model (DEM) and 

smoothed every 2 km to remove elevation spikes. Under topographic steady-state, local channel 

slopes (S) follow a simple power-law scaling relationship with upstream drainage area (A):  

ks = S/A-θ  (1) 

where ks is the channel steepness index and θ is the concavity index (Flint, 1974; Hack, 1957). 

Channel steepness is often dependent on uplift rate but other pertinent factors, such as rock 

strength, precipitation, sediment flux, channel width, and channel hydraulic geometry, 

commonly influence this relationship (e.g., Craddock et al., 2007; Lavé and Avouac, 2001; Roe 

et al., 2002; Sklar and Dietrich, 1998; Tucker and Whipple, 2002; Whipple and Tucker, 2002). 

Discrimination of abrupt breaks in channel steepness can help identify factors perturbing model 

channel morphologies Application of this index to longitudinal river profiles has become a 

powerful quantitative tool for extracting information about the relationship between regional 

tectonics, topography and erosion in fluvial systems (e.g., DiBiase et al., 2010; Kirby and 

Whipple, 2001; Whipple and Tucker, 2002).  

In this study we applied a fixed reference concavity, θref, = 0.45, to facilitate comparison 

of data between river basins (Wobus et al., 2006) and generate a normalized channel steepness 

index, ksn. Following a methodology similar to Ouimet et al. (2009), we used the freely available 

MatLab and ArcMap scripts (http://www.geomorphtools.org) to generate ksn values every 2 km 

for all major tributaries draining >100 km2.  

 

Bulk Sediment Petrography 

Bulk, unsieved sediments were counted in thin section with at least 200 points following 

the Gazzi-Dickinson method (Ingersoll et al., 1984) with lithic fragments classified after 
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Garzanti and Vezzoli (2003) by noting the composition and metamorphic rank of rock fragments 

(MI Index). Thin sections were stained with alizarin red-S to distinguish calcite from dolomite. 

Sands were classified according to the relative proportion of quartz, feldspar, and lithic material 

in each sample exceeding 10%.  

Hydrodynamic processes can produce significant variability in the composition of 

sediments with identical provenance (Frihy et al., 1995; Garzanti et al., 2009; Gazzi et al., 1973). 

We can correct for this environmental bias and limit intrasample variability by applying a 

“Source Rock Density” (SRD) correction to our petrographic data (Garzanti and Andò, 2007a; 

Vermeesch et al., 2016). The relative abundance of mineral phases are adjusted according to 

their densities for each sample and corrected to a suitable SRD value appropriate for provenance 

type and erosion level (Garzanti and Andò, 2007a, b).We corrected our data using a SRD of 2.71 

g/cm3. Bulk petrographic data are reported in Table 2. 

 

Major and Trace Element Geochemistry 

 Samples were analyzed for major and trace elements to provide a base characterization of 

the composition and the degree of chemical alteration. Carbonate was not removed prior to total 

digestion. All samples were freeze-dried and ground before mixing 600 mg of sample with 3600 

mg of lithium tetraborate (LiB4O7; Spectromelt). Samples were pre-oxidized at 500°C with 

NH4NO3 and fused to glass beads. Samples were analyzed by X-Ray Fluorescence for Si, Al, Ti, 

Fe, Na, Ca, K, P and Rb using a Philips PW 2400 X-ray spectrometer at the Institut für Chemie 

und Biologie des Meeres (ICBM) at the Carl von Ossietzky Universität, Oldenburg, Germany. 

Measurements on the XRF were followed after Böning et al. (2009). To assure accuracy and 
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precision, several in-house standards and the certified standard of GSD-12 were analyzed, and 

results were better than 3%. Data are presented in Table 3.  

 

Isotope Geochemistry 

All sediments were analyzed for Sr and Nd isotopes as these isotopic systems can provide 

complementary insight on chemical weathering and provenance in sedimentary systems. Sr 

isotopic compositions are largely a function of the age and composition of silicate bedrock but 

chemical weathering is known to elevate 87Sr/86Sr values (Derry and France-Lanord, 1996). 

However, when provenance can be constrained by a system unaffected by transport or diagenetic 

processes, such as the largely immobile Sm-Nd system (Goldstein et al., 1984), the paired Rb-Sr 

and Sm-Nd isotopic systems make a powerful provenance proxy for siliciclastic sediments that 

has a proven track record in the NW Himalaya (e.g.,Clift et al., 2002b). The bulk silicate 

sediment fraction was analyzed for most samples, but a few samples only allowed analysis of the 

<300 µm fraction.  

Samples were first leached using buffered acetic acid to remove any carbonate-bound Sr 

prior to total digestion. Mn-Fe oxides containing authigenic Sr, and potentially any material 

bearing authigenic Nd, were removed with a leach of 25% (v/v) acetic acid and 0.02 M 

hydroxylamine hydrochloride (HH). All Sr and Nd signatures measured are therefore assumed to 

originate from the silicate fraction, perhaps with minor fractions of dolomite.  Leached sediments 

were digested in closed PTFE-vessels following the procedure described in Böning et al. (2004). 

Briefly, organic matter was oxidized from all samples by treatment with concentrated HNO3 

overnight. Subsequently, HF and HClO4 were added and the vessels were heated for 12 h at 

180°C. After digestion, solutions were evaporated on a heated metal block (180°C) and residues 
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were redissolved, fumed three times with 6N HCl, and dissolved finally in 1N HNO3. All acids 

were of ultrapure quality.  

To isolate rare earth elements (REEs) and Sr, the remaining solutions were put through 

two-step column chemistry using Eichrom TRU-Spec resin. Nd was separated from interfering 

REEs using Eichrom LN-Spec resin with 0.23–0.25 N HCl as eluant. The fraction containing Rb 

and Sr was loaded on Eichrom Sr-Spec columns using HNO3, Rb was washed out with HNO3, 

and Sr was eluted with Milli-Q water.  

Isotopic compositions of Nd and Sr were analyzed using a Thermo Neptune Plus 

Multicollector ICP-MS at the ICBM in Oldenburg. Samples for Nd were analyzed using the Nd 

standard JNdi-1. The 143Nd/144Nd values of all samples were corrected for internal mass 

fractionation using 146Nd/144Nd = 0.7219 and normalized to the reported JNdi-1 value of 

143Nd/144Nd = 0.51215 (Tanaka et al., 2000). Internal mass fractionation for Nd was corrected for 

using 146Nd/144Nd = 0.7219. Nd isotopic compositions are expressed in εNd notation:  

εNd = [(143Nd/144Nd)sample / (143Nd/144Nd)CHUR - 1] * 104   (2) 

(143Nd/144Nd)CHUR is the Chondritic Uniform Reservoir with a value of 0.512638 (Jacobsen and 

Wasserburg, 1980). The external reproducibility is calculated for each session separately using 

the analyses of JNdi-1 and was generally better than ±0.000015 or ± 0.3 εNd units (2σ). The 

BCR-2 standard (n = 4) had an εNd value of 0.1 (± 0.3, 2σ) and was well within the reported εNd 

value of 0.0 ± 0.2 (Raczek et al., 2003). The procedural blank was ≤ 30 pg Nd. 

 Samples for Sr were analyzed using standard-sample bracketing techniques using 

NBS987 and normalized to the reported value of 0.710248 (Thirlwall, 1991). Mass fractionation 

for Sr was corrected using 86Sr/88Sr = 0.1194. Contents of Kr, Rb, and Ba were monitored and 

found to be negligible. The external reproducibility is calculated using the analyses of NBS987 
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and was generally better than 80 ppm (2σ). The BCR-2 standard (n = 4) had a 87Sr/86Sr ratio of 

0.70502 ± 0.00004 (2σ) and was within the reported 87Sr/86Sr ratio of 0.70496 ± 0.00002 (Raczek 

et al., 2003). The procedural blanks were negligible throughout. Results are reported in Table 4. 

 

Detrital Zircon U-Pb Geochronology  

Detrital zircon U-Pb dating has an established history of resolving questions on sediment 

provenance within Himalayan river systems (e.g., Alizai et al., 2011; Amidon et al., 2005) and in 

other drainage basins in Asia (e.g., He et al., 2013; Robinson et al., 2014). Zircon is a common 

mineral and is chemically and mechanically resistant to erosion, such that several cycles of 

erosion and sedimentation do not significantly alter U and Pb compositions (Gehrels, 2014). In 

this study we target the 63–250 µm size fraction because this range can effectively yield the 

same distribution of all significant age populations present in the bulk zircon population (Yang et 

al., 2012). 

The use of U-Pb zircon dating for the Zanskar River is especially appropriate because 

there are a significant number of existing U-Pb zircon bedrock analyses from Himalaya bedrock. 

Although lithostratigraphic units in the western Himalaya have zircon populations that overlap, 

strong preferential occurrence of certain age groups can aid in identifying regions of sediment 

yield. (e.g., Bernet et al., 2006; Clift et al., 2004; DeCelles et al., 2004; Gehrels et al., 2011; Hu 

et al., 2015; Shellnutt et al., 2014; White et al., 2011; Wu et al., 2007).  

Samples were separated for zircon using standard magnetic and heavy liquid separation 

techniques. A rare-earth element hand magnet was passed several times over the sample to 

remove extremely magnetic material and sieved again to 63–250 µm before magnetic separation. 

All samples were pre-treated using hydrogen peroxide, acetic acid, and oxalic acid to remove 
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organic material, carbonate, and Fe-oxides, respectively. Zircons were mounted in epoxy, 

polished, and imaged by reflected light and cathodoluminescence. 

U-Th-Pb isotopic compositions were determined at the London Geochronology Centre 

facilities at University College London using a New Wave 193 nm aperture-imaged frequency-

quintupled laser ablation system, coupled to an Agilent 7700 quadrupole-based ICP–MS. An 

energy density of ~2.5 J/cm2 and a repetition rate of 10 Hz were used during laser operation. 

Laser spot diameter was ~30 µm with sampling depth of ~5 µm. Sample-standard bracketing by 

measurement of external zircon standard PLESOVIC (Sláma et al., 2008) and NIST 612 silicate 

glass (Pearce et al., 1997) were used to correct for instrumental mass bias and depth-dependent 

intra-element fractionation of Pb, Th and U. Temora (Black et al., 2003) and 91500 (Wiedenbeck 

et al., 2004) were used as secondary zircon age standards. Over 100 grains were analyzed for 

each sample to provide a statistically robust dataset for lithologically diverse units (Vermeesch, 

2004). Age data were filtered using a ± 15% discordance cut-off. For grains with ages less than 

1000 Ma, the 206Pb/238U ratio was used and the 207Pb/206Pb ratio for grains older than 1000 Ma. 

All measurements were processed using GLITTER 4.4 data reduction software (Griffin et al., 

2008). Sample-standard bracketing by measurement of external zircon standard PLESOVIC 

(Sláma et al., 2008) and NIST 612 silicate glass (Pearce et al., 1997) were used to correct for 

instrumental mass bias and depth-dependent intra-element fractionation of Pb, Th and U. Temora 

(Black et al., 2003) and 91500 (Wiedenbeck et al., 2004) were used as secondary zircon age 

standards. Over 100 grains were analyzed for each sample to provide a statistically robust dataset 

for lithologically diverse units (Vermeesch, 2004). Age data were filtered using a ± 15% 

discordance cut-off. For grains with ages less than 1000 Ma, the 206Pb/238U ratio was used and 

the 207Pb/206Pb ratio for grains older than 1000 Ma. All measurements were processed using 
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GLITTER 4.4 data reduction software (Griffin et al., 2008). Time-resolved signals recording 

isotopic ratios with depth in each crystal enabled filtering to remove signatures owing to 

overgrowth boundaries, inclusions and/or fractures. Individual U-Pb ages are reported at 1σ.  

Kernel density estimations (KDE) provide robust age distributions and are presented in 

the text for visual analysis of age population distributions and abundance. Traditional probability 

density functions may smooth older age populations that inherently have a greater age error than 

younger populations at 1σ, therefore KDEs are favored in this study to prevent this bias 

(Vermeesch, 2012). Multidimensional scaling (MDS) was performed using R.info Version 3.1.1 

programming codes modified after Vermeesch (2013) to quantitatively compare zircon spectra.  

 

RESULTS  

Basin Morphology  

 A large-scale rainfall gradient exists across Zanskar from the southwest to the northeast 

(Fig. 2, 4A), with highest mean annual rainfall (>650 mm·yr-1) values observed in the northwest 

inside the Stod River catchment. Lowest values (<150 mm·yr-1) occur around Tso Kar (Fig. 1C). 

Steepest slopes are in the Stod and Khurna catchments, as well as the Zanskar Gorge, (Fig. 4B), 

that correspondingly also indicate regions of highest local relief (Fig. 4C).  

 Zanskar channel profile geometries (Figure 5) indicate strong glacial modification. 

Remnants of multiple recessional moraines exist in the lower Tsarap River, the overdeepened 

Stod and Khurna Rivers, and the steep, headwater Tsarap tributaries. The broad, alluviated 

Padum Basin ends with a terminal moraine at Hanumil (Fig. 1C). The Zanskar Gorge can be 

characterized in general as a large knickzone. Reworking of a recessional moraine results in a 
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small knickzone in the lower Tsarap River, although the knickzone is likely enhanced in part by 

a remaining artifact in the DEM data.  

Normalized channel steepness values (Fig. 4D) correspond to several locations for 

recessional moraines in small, headwater tributaries, and in the lower Tsarap, Khurna and 

Markha Rivers (Fig. 5). The highest ksn values (>500) occur in the upper Zanskar Gorge and in 

short segments in the middle reaches of the Tsarap River containing bedrock gorges. We do not 

include ksn values for the presently endorheic Tso Kar basin (Fig. 4D) but do include other 

morphometric parameters for this region for reference.  

 

Bulk Sediment Petrography 

 The Zanskar River transports an incredible diversity of sands that range from lithic 

carbonaticlastic to feldspatho-quartzolithic metamorphiclastic compositions (Table 2). 

Framework petrography indicates abundant quartz, feldspar, low rank metacarbonate, high-rank 

fibrolite-bearing metafelsite fragments, with minor chert, epidote-bearing metabasite, and 

serpentinized ultramafic rock fragments. Abundant mineral grains include calcite and dolomite 

spar, mica, sillimanite, green amphibole, and ultrastable minerals such as zircon, blue-green 

tourmaline, rutile, and titanite. Minor kyanite, garnet, staurolite, and brown amphibole are noted. 

Most sands contain moderate amounts of mica and/or dense minerals but most carbonaticlastic 

sands are poor in both micaceous and dense phases.  

 Zanskar River sediments roughly divide into two petrographic groups (Fig. 6). Samples 

containing slightly more lithic fragments, predominantly more carbonate and lesser volcanic 

fragments, fall within rocks of Tethyan Himalayan affinity (Fig. 6A). Samples that are slightly 

more quartzofeldspathic lie closer to rocks with Greater Himalayan affinity. Similarly, samples 
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with higher grade metamorphic minerals fall nearer rocks of known Greater Himalayan affinity 

(Fig. 6B).  

 

Major and Trace Element Geochemistry 

 Major element geochemistry can be effective in assessing the intensity of chemical 

weathering. The “Chemical Index of Alteration” proxy expressed as:  

CIA = ((Al2O3/(Al2O3+Na2O+K2O+CaO*)) • 100 (3)  

can be used to compare the relative leaching of labile elements (K, Na, silicate-only Ca) to 

residual, immobile Al during feldspar weathering (Nesbitt et al., 1980). CIA values range from 

50 to 100 with higher values indicating stronger chemical weathering. A correction is made to 

CIA values if excess CaO is present in carbonates and phosphates by assuming a reasonable 

Ca/Na ratio for the silicate material and correcting for CaO in phosphate (Singh et al., 2005).  

 Zanskar River sediments (Table 3; Fig. 7) span low to moderate CIA values (52–71). In 

general, higher CIA values occur in upstream tributaries and lower values, indicating less intense 

weathering, occur in the lower Tsarap (ID #9) and Stod (ID #7, #8) Rivers, and Padum Basin 

sediment samples of Pishu (#5) and Hanumil (ID #4). CIA values are poorly correlated to SiO2, 

with slight negative correlation as silica contents increase.  

 

Isotope Geochemistry 

 Variations in Sr and Nd isotopes for Zanskar River sediments and regional bedrock 

source terranes are plotted in Figure 8. Isotopic compositions for decarbonated Zanskar River 

sediments display a range in ɛNd values from -10 to -17.4 and a wide range of 87Sr/86Sr isotope 

values from 0.713990 to 0.755070. No coherent correlation exists between the isotopic systems.  
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 The widest variation in 87Sr/86Sr values occurs in the upstream Tsarap River tributaries 

(Fig. 9). The Zara (ID #10), lower Tsarap (ID #9), and Yunam (ID #13) River samples display 

the greatest enrichment, and Gata (ID #12) one of the least enriched. The Stod River (ID #7, #8) 

sediments remain remarkably consistent with a 87Sr/86Sr value of ~0.723. After the confluence 

with the Stod River, 87Sr/86Sr values become only slightly less enriched down the Zanskar River 

as the Oma (ID #3) and Markha (ID #2) Rivers join the trunk river.  

 The Stod River, in contrast to the Sr isotopes, demonstrates a shift to more negative ɛNd 

values downstream (Fig. 9). Similar ɛNd values are seen at Yunam (ID #13) and Gata (ID #11), as 

well as at Toze Lungpa (ID #11) and Zara (ID #10). Curiously, the trunk sample at Pishu (ID #5) 

demonstrates a more negative ɛNd value than either the lower Stod (ID #7) or Tsarap (ID# 9) 

Rivers after they join. Downstream of Pishu (ID #5), the trunk river values do not vary 

significantly even downstream of the more positive Markha (ID #2) and Oma (ID #3) River 

confluences.  

 

Detrital U-Pb Zircon Geochronology  

All dated Zanskar River samples are presented as kernel density estimate (KDE) 

diagrams following Vermeesch (2004) in Figure 10. All Zanskar age analyses are presented in 

Table S1. Most samples contain one or more peak populations at 245–380 Ma, 440–500 Ma, 

500–600 Ma, and 750–850 Ma. Some samples have a composite peak from 750–1250 Ma 

comprised of smaller subsidiary peaks at ~900 Ma, ~1000 Ma and ~1100 Ma. Paleoproterozoic 

and Archean peaks are found from 1600–1900 Ma and at ~2500 Ma, with very few ages at 

~3200 Ma and ~3400 Ma.  
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Lower Stod (ID #7), Pishu (ID #5), Hanumil (ID #4), and Zanskar-Indus (ID #1) 

confluence samples display similar age spectra to one another, with very prominent peaks at 

750–850 Ma, and with two smaller peaks at ~350 Ma and ~450 Ma. Tsarap tributary samples 

populate a second group that also display the prominent ~450 Ma Ma peak but contain older ages 

clustered at ~530 Ma, the broad 750–1250 Ma peak and an older, less populous peak from 1600–

1900 Ma. The Zara (ID #10), Lower Tsarap (ID #9), Markha (ID #2), and to a lesser extent 

Yunam (ID #13), samples contain small peaks at ~2500 Ma.  

Zircons less than 300 Ma were uncommon in most samples but some tributaries yielded 

Mesozoic and Cenozoic ages. Pishu (ID #5), Hanumil (ID#4)  and the Zanskar-Indus confluence 

(ID #1) yield zircon with ages clustered at ~260 Ma. Toze Lungpa (ID #11) was the only sample 

that yielded five zircon with a latest Triassic-earliest Jurassic mean age of 209 ± 6 Ma. The 

Markha River yielded two late Cretaceous ages, one at 130.5 ± 3.4 Ma and 97.2 ± 2.8 Ma. One 

late Paleocene age at 57.7 ± 1.1 Ma was yielded from the Zanskar-Indus confluence. Three 

samples (Lower Stod, Hanumil, Pishu) contained Oligocene and Miocene grains with ages 

ranging from 18–32 Ma.  

 

DISCUSSION 

Downstream provenance evolution  

 Little variability in Sr and Nd isotopic compositions is observed in the trunk river 

downstream of Padum. The Zanskar-Indus (ID #1) confluence sample is most comparable to the 

Lower Stod River (ID #7; Fig. 9). Even so, Sr values decrease and Nd values increase slightly 

downstream of Padum suggesting minor addition of sediment from smaller (<100 km2) Zanskar 

Gorge tributaries (Fig. 5). This sediment must be isotopically similar to the Oma (ID#3) and 
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Markha  (ID#2) Rivers because of the observed decrease in 87Sr/86Sr values and increase in ɛNd. 

Nonetheless, contribution from the Oma River is negligible as the trunk river does not change its 

ɛNd value downstream of this confluence.  

Much of the geochemical variability in Zanskar River sediments occurs upstream of 

Padum before the confluence of the Lower Stod (ID #7) and Tsarap (ID #9) Rivers. 87Sr/86Sr 

values from the Upper (ID #8) and Lower Stod are within error of each other, but the Upper Stod 

is marked by a more positive ɛNd value. The downstream decrease in ɛNd values along the Stod 

River likely results from contribution of felsic, less radiogenic crystalline Greater Himalaya (ɛNd 

= -15.2 ± 2.2; (Robinson et al., 2001). Sediment from Panjal Traps basalts (ɛNd = -8–0; (Shellnutt 

et al., 2014) added into the Upper Stod can account for the more positive ɛNd values seen. 

 The Tsarap River drains almost all lithologies exposed in the Zanskar River basin and 

this in part rationalizes the wide variability observed in Tsarap catchment isotope compositions 

(Lower Tsarap (ID# 9), Toze Lungpa (ID #11), Zara (ID #10), Yunam (ID #13)). We conclude 

that the Lower Tsarap sample is not representative of a Tsarap catchment-averaged composition. 

This is because the ɛNd value observed at Pishu (ID #5; ɛNd = -15.5) after mixing of the Lower 

Stod (ID #7; ɛNd = -14.5) requires that the net contribution from the Tsarap be more negative 

than -15.5 (consistent with measurements in the upper Tsarap), in contrast to the measured 

Lower Tsarap sample (ID #9; ɛNd = -13.6). This raises the possibility that the Lower Tsarap 

sample is locally derived. Alternatively, this sample could represent a transient pulse of sediment 

in the Tsarap derived from enhanced erosion sourced from similar bedrock and/or sediments 

further upstream, perhaps linked to older, large volume mass movements triggered by climatic 

events (e.g., cloud bursts, (Hobley et al., 2012)).  
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 Bulk petrography and detrital zircon analyses suggest two models for sediment mixing 

downstream (Fig. 11). Framework grains indicate a continued, progressive compositional 

evolution of sediments downstream, with marginally greater contribution of sediment from the 

Stod River (ID #7, #8) than other tributaries. In contrast, detrital zircon grains demonstrate an 

overwhelming dominance of material sourced from the Stod River and little variation in zircon 

populations downstream of Padum. MDS analysis of detrital zircon samples clearly segregates 

sediments into two groups, whereas bulk petrography and major element compositions form 

slightly less discrete groups (Figs. 12A-C). Selected source bedrock U-Pb age data are plotted for 

comparison in Figures 12D and S1.  

Below the Tsarap (ID #9) and Stod (ID #7) River confluence at Padum, each detrital 

zircon sample on the trunk river contains 600–850 Ma grains as the majority population (Fig. 

11). A small increase in >2400 Ma ages at the Zanskar-Indus (ID #1) confluence, however, does 

suggest minor contribution from the Markha River (ID #2). Bulk petrography also argues for an 

additional contribution from the Markha and Oma (ID#3) Rivers, and likely other small Zanskar 

Gorge tributaries. After exiting the gorge in the lower reaches, river sediments contain more 

Tethyan sedimentary and low-grade metasedimentary lithics than below Hanumil (ID #4) at the 

gorge entrance.  

Lithic grains of trunk river samples above the gorge display closest similarity to the 

Lower Tsarap (ID #9) River (Figs. 11 and 12). Pishu (ID #5, #6) and Hanumil (ID# 4) samples 

contain abundant Tethyan Himalayan metapelitic and carbonate fragments, with very few high-

grade, coarsely crystalline Greater Himalayan gneiss and calc-gneiss fragments. Although these 

trunk river samples do not contain a lot of high-grade lithic fragments, the abundance of quartz, 

feldspar and fibrolite still indicate strong contribution of Greater Himalayan material. This 
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sediment is likely sourced in part from the Cambro-Ordovician and Mississippian-Permian 

granitic gneisses exposed as part of the Greater Himalaya along the ZSZ, rather than from the 

Zara River (Fig. 3). The abundance of quartzofeldspathic, micaceous, and schistose 

metamorphiclastic detritus in the Zara (ID #10) sample might suggest an overspill connection 

existed between Tso Kar and the Zanskar River, as proposed by Demske et al. (2009) and 

Wünnemann et al. (2010). Our provenance data from the Zara River neither support nor preclude 

sediment supply to the Zanskar River via an overspill connection (e.g,, Munack et al., 2016). 

Potential parent bedrock sources to the Zara River are exposed immediately northeast, outside 

the Tso Kar basin, as well as along strike into that basin and further southeast to Tso Morari. 

Furthermore, we suggest the Zara River does not contribute much Nyimaling-Tso Morari gneiss 

dome material to trunk river samples because none is found in bulk sediments lower in the 

Tsarap River (Fig. 11). Similarly, the Yunam River (ID #13) carries abundant Greater Himalayan 

metamorphic material but is simply diluted by the Tethyan Himalayan sedimentary fragments 

sourced from other tributaries downstream.  

Detrital zircon populations with central ages at ~350 Ma, ~450 Ma, and ~530 Ma (Fig. 

10) support previous findings for abundant Cambro-Ordovician and Mississippian-Permian 

granites found in the Greater Himalaya in Zanskar and elsewhere in the northwest Himalaya 

(Fig. S2; Honegger et al., 1982; Horton and Leech, 2013; Spring et al., 1993). Detrital zircon 

ages clustered at ~260 Ma could be sourced from Panjal Traps but are younger than the reported 

ages (~289 Ma) northeast of Zanskar (Shellnutt et al., 2014; Singh et al., 1976). Permian granites 

are not recognized in Greater Himalaya units from the eastern and central Himalaya (Gehrels et 

al., 2011). The relative lack or presence of such prominent age peaks between the central/eastern 



 

 24 

and northwest Himalaya encourages future caution when using detrital zircon compilations to 

correlate strata across the orogen when such heterogeneities exists (Fig. S2).  

Heavy mineral fertility likely plays a role in the apparent contrast observed between bulk 

petrography and detrital zircon analyses. For example, detrital zircon ages at Yunam (ID #13) 

appear to be transmitted downstream to Gata (ID #11; Figs. 9 and 11), consistent with a stable 

εNd value over that stretch of river. However, the bulk petrography and Sr isotope values change 

markedly between these two samples, requiring significant sediment dilution. This discrepancy 

requires that either the material being added has the same zircon and Nd-bearing phases but 

different bulk lithologic composition, or that the sediment contributed from tributaries between 

Yunam and Gata (ID #11) is lacking in those phases. We favor the latter as being more likely. 

 

Controls on Erosion 

 While our dataset cannot quantify sediment yields, we here provide the first initial 

constraints on sediment provenance and the relative contributions of sources downstream in the 

Zanskar River. The data presented above yield a clear image of the Stod River being a significant 

source of sediment to the Zanskar. This influence is moderated by downstream sediment 

contributions from tributaries and minor, side valley tributaries. We argue that the bulk of 

sediment production in the Zanskar River is driven by strong glacial erosion in the Stod River 

valley and lesser hillslope erosion across the catchment. We favor glacial erosion as the primary 

process controlling erosion because westernmost Zanskar and Stod River hillslopes and valleys 

have been strongly modified by glaciation for at least the last 78 k.y. (Taylor and Mitchell, 2000) 

and continue to be conditioned by active alpine glaciers. Glaciers comprise ~28% of the modern 

Stod River basin versus 7-8% of the modern Tsarap and overall Zanskar River basins. Spatial 
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patterns of erosion in Zanskar may not correlate significantly with convexities in river profiles 

caused by lithologic changes or high channel steepness (Figs. 2 and 5). Instead, the highest yields 

come from the Stod River catchment that contains a broad, overdeepened and alluviated U-

shaped valley, steep hillslopes housing north-facing glaciers, low to moderate ksn values, and 

convexities along the river profile that reflect earlier glacial conditioning.  

 Hillslope processes acting at high elevation in semi-arid regions cannot be ruled out as 

significant producers of sediment. Soil creep, grussification, granulation, and salt weathering are 

known to generate sediment along the Indus River valley but are likely less influential than (peri-

) glacial and fluvial processes in driving bedrock erosion and evacuating sediment in paraglacial 

environments (Blöthe et al., 2015; Dietsch et al., 2015; Hales and Roering, 2007; Scherler, 

2014). Hillslope processes operate at slower rates and the material that is produced is not readily 

mobilized. Erosion in drier, unglaciated catchments in Zanskar is likely strongly driven by slow 

hillslope processes but unlikely operating at comparable rates or volumes as glaciated 

catchments.  

Bookhagen et al. (2005a) indicate that mass wasting is fundamental in driving increased 

sediment flux and shaping landscapes in the dry Himalayan interior. Debris flows and deep-

seated landslides are facilitated when intense summer rainfall destabilizes poorly vegetated 

hillslopes. Over the Holocene, mass wasting events correlate well with periods of enhanced 

monsoonal rainfall in steep rain shadow reaches (Bookhagen et al., 2005b; Dortch et al., 2009). 

Our findings do not support rainfall-modulated landsliding as a primary control on modern 

erosion in the Zanskar River. The few mass wasting deposits identified in the basin neither 

correlate with modern erosion patterns nor major knickzones.  
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 Seasonal summer monsoonal precipitation, however, may provide a first-order control on 

sediment transport. We propose that glacial erosion drives production of unconsolidated 

sediments that are then later reworked during high-intensity monsoon events in the modern 

Zanskar River basin. Snow and glacial meltwater cause heightened discharge and suspended 

sediment flux in the dry Himalaya during the early summer (Anderson et al., 2004; Burbank et 

al., 2012), but later monsoonal storm events more effectively drive sediment transport. The 

magnitude of glacial sediment production and/or flux of reworked sediment from the Stod River 

catchment is great enough that significant dilution of this signal does not occur downstream, 

even after addition of mobilized hillslope sediments. This is in contrast to what has been 

observed in the frontal Himalaya where glacial sediment production is masked by much stronger 

monsoonal erosion (Godard et al., 2012). Erosion in Zanskar also contrasts to that seen in the 

unglaciated basins along the Indus valley that receive <115 mm•yr-1 precipitation and have 

extremely slow integrated rates of erosion (Dietsch et al., 2015; Dortch et al., 2011b; Munack et 

al., 2014). We argue that sediment production and transport in the Zanskar River basin are 

modulated by the same primary drivers of erosion (i.e., glaciers and monsoon rainfall), but that 

these operate at different relative magnitudes compared to the frontal Himalaya, as well as the 

more slowly denuding regions along the Indus Valley. 

 Our study of modern erosion patterns in the Zanskar River naturally solicits comparisons 

between contemporary and Quaternary erosive conditions. While modern sediments in semi-arid 

to arid Ladakh and Zanskar may in part be mobilized during high intensity storm events (e.g., 

Hobley et al., 2012; Stolle et al., 2015), it cannot be assumed that these conditions held true in  

the past. Stronger Holocene monsoon phases at 8–10 ka and 30–35 ka brought enhanced 

precipitation onto Tibetan Plateau margins that promoted greater vegetative cover (Demske et 
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al., 2009; Herzschuh, 2006; Shi et al., 2001; Wünnemann et al., 2010). Increased slope stability 

as a result of more vegetation could reduce the erosive capability of high-intensity storm 

perturbations and potentially reduce erosional response (e.g., Beaumont et al., 2000). Under 

prolonged enhanced monsoonal conditions, it is unlikely storm events had equivalent impacts 

over the region, and if these events had similar recurrence, transience, and magnitude. In light of 

the devastating debris flows in 2010 and 2015 in Ladakh, more work is needed to understand the 

nature of these high intensity events and their erosional impact.  

 Next, our work begs the question whether the material yielded from the Stod River is 

eroded from bedrock or primarily reworked from glacial moraines. We cannot definitively 

untangle the relative contribution of reworked glacial material at least with our dataset, however, 

based on the present observation of abundant incised glaciofluvial terraces we prefer the idea that 

large-scale recycling of material generated during the Last Glacial Maximum is the primary 

source of sediment to the Stod River. Furthermore we recognize that longer term glacial and 

monsoonal phases dictating sediment generation and reworking might be disrupted by shorter 

duration, perhaps stochastic, climatic perturbations. However, the generally cohesive trends in 

our provenance data would indicate that the modern signal is not dominated by these events.  

Significant dissection of Pleistocene valley-fills in the upper Tsarap catchment highlights 

a long history of sediment reworking into the paleo-Zanskar River (Munack et al., 2016). 

Although our data here do not indicate a strong contemporary contribution from these deposits to 

the modern Zanskar River, to what extent the provenance signal may have been distorted as a 

result of such recycling in the past remains open to investigation. This combined understanding 

of erosion in Zanskar further emphasizes that sediment buffering over millennial to even multi-
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millennial timescales is likely an important process controlling sediment routing in the 

Himalayan rain shadow and the overall transfer of climate-erosion signals downstream.  

 

CONCLUSIONS 

  We applied a suite of geochemical and geochronological techniques to establish spatial 

patterns of erosion in a rain shadow river system. Our findings demonstrate that modern 

sediment provenance in Zanskar is driven by focused glacial erosion and monsoonal rainfall 

along the Greater Himalaya and Zanskar Shear Zone. The Stod River catchment, representing 

only 13% of the total area of the Zanskar River basin, dominates in delivering sediment to the 

modern drainage. The distribution of erosion in Zanskar is not directly controlled by monsoonal 

rainfall as is the case in the frontal Himalaya, but rather the precipitation gradient promotes a 

concentration of permanent, north-facing glaciers that efficiently scour the High Himalaya. The 

Zanskar differs from its wetter neighbors to the south in being less controlled by mass wasting 

but also differs from drier, formerly glaciated catchments further north in having enough 

precipitation to regularly mobilize the sediment produced by glaciation. Dry, low relief, 

unglaciated regions of Zanskar contribute minimally to the total modern sediment flux. We 

suggest that increased flux from these arid regions may only be significant when extreme 

monsoon storms, or even prolonged, intense Holocene monsoon phases, mobilize sediments 

from unvegetated hillslopes.   

 Our data are broadly consistent with the glacially-dominated sediment production model 

of Blothe et al. (2014), but here our analyses the potential importance of monsoon precipitation 

in remobilizing sediment and allowing its transportation into the main Indus River system. While 

the majority of sediment may be fluxed during deglacial and post-glacial times, we argue that it 
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monsoon may control sediment transport rather than deglaciation itself (c.f., Blöthe et al., 2014). 

This appears to be true at least in the present day in this transitional setting between the wet 

frontal Himalaya and the arid orogenic interior of the Tibetan Plateau. In the absence of tectonic 

forcing in Zanskar, our results support climatic control on erosion in the Himalaya. If surface 

processes dominate over million year timescales then these would shape orogenic architecture in 

the way favored by critical wedge and channel flow extrusion models (Beaumont et al., 2001; 

Robinson et al., 2006). 
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FIGURE CAPTIONS 

Figure 1. Digital elevation model (DEM) maps of South Asia, the Himalaya, and Zanskar River 

basin. (A) Shuttle Radar Topography Mission 90 m (SRTM90) map of South Asia depicting the 

Indus River (gray lines) and all Himalayan river drainage outlines above 500 m (black lines). 

Gray overlay shows location of Figure 4; (B) SRTM DEM and hillshade of all Himalayan 

drainage basins with location of the Zanskar River basin (Fig. 1C) outlined in black; (C) 

Topographic map of the Zanskar River basin with sample numbers and locations. Glacial extent 

from Global Land Ice Measurements from Space (GLIMS) Version 1 data (Shrestha et al., 

2014). Drainage basin polygons provided freely online by Bodo Bookhagen. Sample locations 

noted with white dots and village locations with black squares. Numbers in circles are after Table 

1. Dashed gray line indicates extent of internally drained Tso Kar basin.Village names 

abbreviated as: C = Chilling; HN = Hanumil; PG = Pang; PM = Padum; PS = Pishu; and SR = 

Sarchu.  
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Figure 2. Swath profiles for topography and rainfall across the Himalayan front and into the 

Himalayan rain shadow. Values for profiles were extracted from a 50 km by 280 km transect 

shown in Fig. 1A. Solid lines indicate mean values with shaded regions signifying ± 2σ. 

 

Figure 3. Simplified geologic map of the Zanskar River basin after Fuchs (1987) with additions 

from Zanskar Shear Zone from Dèzes et al. (1999), southern Zanskar (Lahul) from Steck et al. 

(1993) and Tso Kar area (Epard and Steck, 2008). N-T = Nyimaling-Tso Morari gneiss dome. 

 

Figure 4. Parameter maps for evaluating morphology and erosion in the Zanskar River basin. (A) 

TRMM mean annual rainfall distribution map illustrating the precipitation gradient from west to 

east. Rainfall map was created using the 1998–2009 TRMM time series for mean annual rainfall; 

(B) Mean slope for the Zanskar River basin calculating using a 1-km radius circular moving 

window; (C) Local 5-km relief expressed as the difference between maximum and minimum 

elevation in a given area of a 5-km radius circular moving window; (D) Normalized channel 

steepness index (ksn) calculated using TopoToolbox 2.0 (Schwanghart and Scherler, 2014). 

Subcatchments within the Zanskar River basin are outlined in gray in Figs. 2A-C.  

 

Figure 5. Longitudinal profiles for tributaries of the Zanskar River. (A) Raw channel profiles 

were smoothed using a 2 km radius moving average window to remove elevation spikes. Black 

dashed lines mark trunk river tributaries; light gray dotted lines mark minor tributaries to Tsarap 

River catchment. Arrows indicate published locations of recessional moraines (Burbank and 

Fort, 1985; Damm, 2006; Mitchell et al., 1999; Owen and Benn, 2005); (B) Mean normalized 

channel steepness index (ksn) values plotted for every 2 km segment along river longitudinal 
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profiles for all main streams. Values were extracted using MATLAB code adapted from 

TopoToolbox 2.0 (Schwanghart and Scherler, 2014).Abbreviations for streams are: K = Khurna; 

M = Markha; O = Oma Chu; S = Stod;; T = Tsarap; TC = Tsarap Chu; TZ = Toze Lungpa; and Y 

= Yunam.  

 

Figure 6. Bulk petrographic compositions of Zanskar sediments. (A) Bulk compositions 

classified by Q (quartz), F (feldspathic), and L (lithic) framework grains following the Gazzi-

Dickinson method of point counting (Ingersoll et al., 1984) and classified after Garzanti and 

Vezzoli (2003). Gray lines indicate data corrections for Source Rock Density (SRD; Vermeesch 

et al., (in press). Open diamonds are petrographic data from the lower Zanskar Gorge, where Z = 

Zanskar-Indus confluence and M = Markha River (Blöthe et al., 2014); (B) Bulk composition of 

Zanskar sediments plotted onto the (garnet + kyanite + sillimanite) – pyroxene – (zircon + 

tourmaline + rutile + amphibole + epidote) ternary diagram. Fields for Greater Himalaya 

“Formation I” kyanite- and fibrolite-bearing gneiss, Tethyan and Lesser Himalaya drawn after 

Garzanti et al. (2007). Samples are numbered after Table 1. 

 

Figure 7. Bulk major element geochemistry of Zanskar River sediments plotted on the ternary 

Al2O3-CaO+Na2O-K2O diagram (Fedo et al., 1995) with Chemical Index of Alteration (CIA) 

values (Nesbitt et al., 1980). Mineral abbreviations are as follows: bt = biotite; chl = chlorite; gb 

= gibbsite; il = illite; kao = kaolinite; ksp = potassium feldspar; m = muscovite; pl = plagioclase; 

sm = smectite. Samples for average Archean upper crust (gray square), average granodiorite 

(open square), average granite (open diamond), and average A-type granite (gray diamond) are 

shown (Anderson and Bender, 1989; Condie, 1993; Winter, 2010). Line indicates typical 
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weathering evolution path for bedrock unaffected by K-metasomatism (Fedo et al., 1995). 

Samples are numbered after Table 1. 

 

Figure 8. Crossplot of ɛNd and 87Sr/86Sr compositions for Zanskar River sediments compared to 

other bedrock data from the Panjal Traps (Shellnutt et al., 2012; Shellnutt et al., 2014), the 

Greater and Lesser Himalaya (Ahmad et al., 2000; Deniel et al., 1987; Inger and Harris, 1993; 

Parrish and Hodges, 1996), Transhimalaya (Rolland et al., 2002), and additional Tethyan 

Himalaya (diamonds) and Greater Himalaya (squares) (Richards et al., 2005) from the Sutlej 

River. Samples are numbered after Table 1.  

 

Figure 9. Diagram showing the progressive downstream variation in bulk sediment (A) 87Sr/86Sr  

and (B) ɛNd compositions for the Zanskar River. Error bars are smaller than symbol size for 

propagated Sr and ɛNd errors. Samples are numbered after Table 1. 

 

Figure 10. KDE diagrams of U-Pb zircon ages from Zanskar River sediments.  

 

Figure 11. Schematic diagram illustrating detrital framework grain and detrital zircon 

populations of Zanskar sands. Q = quartz; F = feldspars; Lc = lithic carbonate; Lsm = other 

sedimentary and low-rank metasedimentary; Lm = medium- to high-rank metamorphic; and Lv = 

volcanic and metavolcanic. Rank of metamorphic grains and MI index (0–500; Garzanti and 

Vezzoli (2003). Concentrations of Zr >> 300 ppm may indicate hydraulic sorting and enrichment 

of sample in dense phases. Black line denotes trunk Zanskar River, with gray lines for tributaries. 

Samples are numbered after Table 1.  
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Figure 12. Multidimensional scaling (MDS) plots showing the Kolmogorov-Smirnov distances 

between Zanskar River sediments and selected bedrock. (A) Classical MDS plot of bulk major 

element geochemistry data; (B) Nonmetric MDS plot of SRD-corrected bulk petrographic data; 

(C) Nonmetric MDS of Zanskar River detrital zircon U-Pb ages; and (D) Nonmetric MDS of 

selected Himalaya bedrock and Zanskar River detrital zircon U-Pb ages. Regional Himalayan U-

Pb zircon data are same as Figure S2. Samples are numbered after Table 1. Data were plotted 

using R code ‘provenance’ written by Vermeesch et al. (2016). Solid lines indicate closest 

neighbor and dashed lines near neighbors in similarity calculations. Bedrock abbreviations in 

Fig. 12D mostly follow depositional ages: pЄ-Є = Proterozoic to Cambrian; D-O = Devonian to 

Ordovician; M-P = Mississippian to Permian; T-J = Triassic to Jurassic; LK = lower Cretaceous; 

uK-Pg = upper Cretaceous to Paleogene; and ZGH = Zanskar Greater Himalayan bedrock 

(Horton and Leech, 2013).  

 

Figure S1. KDE diagrams for selected bedrock U-Pb data for the Zanskar River Basin. Selected 

samples are from the Indus and Tar Groups (Henderson et al., 2010; Wu et al., 2007), Zanskar 

region Greater Himalaya (Horton and Leech, 2013), Panjal Traps (Shellnutt et al., 2011), and 

Cambro-Ordovician granites in Zanskar and the NW Himalaya (Cawood et al., 2007; Girard and 

Bussy, 1999; Kwatra et al., 1999; Miller et al., 2001; Pognante et al., 1990). Selected bedrock 

ages for southern Tethyan Himalaya, Greater Himalaya, and correlative strata from the eastern 

and central Himalaya were plotted (in gray) according to depositional age and compiled into 

composite KDE diagrams (Clift et al., 2014; DeCelles et al., 2000; Gehrels et al., 2011; Hu et al., 

2015; Hu et al., 2012; McQuarrie et al., 2008; Myrow et al., 2010; Myrow et al., 2003).  
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TABLES 

Table 1. Sample locations for Zanskar River sediments. 

Table 2. Bulk petrography of Zanskar River sediments. 

Table 3. Major and trace element geochemistry of Zanskar River sediments. 

Table 4. Nd and Sr isotope geochemistry of Zanskar River sediments. 

Table S1. U-Pb zircon ages of Zanskar River sediments.  
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