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Abstract 13 

 We use apatite fission track (AFT) ages from sediments recovered by International Ocean 14 

Discovery Program in the Laxmi Basin, Arabian Sea, to constrain exhumation rates in the 15 

western Himalaya and Karakoram since 15.5 Ma. With the exception of a Triassic population in 16 

the youngest 0.93 Ma samples AFT ages are overwhelmingly Cenozoic, largely <25 Ma, 17 

consistent with both a Himalaya-Karakoram source and rapid erosion. Comparison of the 18 

minimum cooling age of each sample with depositional age (lag time) indicates an acceleration 19 

in exhumation between 7.8 and 7.0 Ma, with lag times shortening from ~6.0 m.y. between 8.5 20 

and 7.8 Ma to being within error of zero between 7.0 and 5.7 Ma. Sediment supply at that time 21 
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was largely from the Karakoram and to a lesser extent the Himalaya based on U-Pb zircon ages 22 

from the same samples. This time coincides with a period of drying in the Himalayan foreland 23 

caused by weaker summer monsoons and Westerly winds. It also correlates with a shift of 24 

erosion away from the Karakoram, Kohistan and the Tethyan Himalaya towards more erosion of 25 

the Lesser, Greater Himalaya and Nanga Parbat, as shown by zircon U-Pb provenance data and 26 

especially after 5.7 Ma based on Nd isotope data. Samples younger than 7.0 Ma have lag times 27 

~4.5 m.y., similar to Holocene Indus delta sediments.  28 

 29 
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Introduction 33 

 If we are to understand how the evolving climate of Asia has impacted the tectonic 34 

development of the Himalaya and Tibetan Plateau, or vice versa, we must use the sedimentary 35 

records in basins adjacent to these mountain ranges in order to reconstruct the long-term history 36 

of exhumation caused by erosion. Thermochronology measurements on bedrock currently 37 

exposed at the surface only provide constraints on the most recent stages of the cooling history of 38 

those particular units. By definition older bedrock has been removed so that the older erosional 39 

history can only be reconstructed through study of the sedimentary record. However, interpreting 40 

the sedimentary record can be complicated if burial of sediment resets sensitive low temperature 41 

thermochronometers, eliminating the cooling history of the source bedrocks (Carter 1999). 42 

Although higher temperature methods (e.g., muscovite Ar/Ar dating) (Szulc et al. 2006; White et 43 
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al. 2002) can be useful in examining past erosion and are resistant to resetting these have the 44 

disadvantage of being less sensitive to changes in the rates of exhumation by erosion because 45 

they require a greater amount of exhumation between isotopic closure and exposure at the 46 

surface. Nonetheless, detrital apatite fission track (AFT) can also have resolution problems, 47 

because single grain ages are often imprecise, especially for young grains with very low track 48 

counts. 49 

A number of studies have examined the history of erosion in the Himalaya using the 50 

foreland basin sediment record, in particular sedimentary rocks belonging to the Miocene-51 

Pliocene Siwalik Group (Baral et al. 2015; Bernet et al. 2006; Cerveny et al. 1989; Chirouze et 52 

al. 2015; Chirouze et al. 2013; Ghosh & Kumar 2000; Najman 2006; van der Beek et al. 2006). 53 

Although this stratigraphic unit has provided useful information about past patterns and rates of 54 

erosion the quality of information from AFT thermochronology has been limited due to resetting 55 

caused by post-deposition burial, especially in  the lower parts of the section (van der Beek et al. 56 

2006). In addition, the foreland basin sequence at any one particular location will typically 57 

reflect the rivers that are flowing from the Himalaya at that point, providing a localized record. 58 

Although this may be very useful for examining single rivers, it is often hard to judge how 59 

effective each sequence might be in reconstructing erosion at the regional scale. For example, 60 

because the trunk Indus River lies on the western edge of the drainage, Siwalik Group rocks in 61 

the eastern parts of the catchment provide no information about how its sediment load may have 62 

evolved. 63 

In this study we present AFT data from new scientific boreholes in the western Indian 64 

Ocean in order to derive a regional image of changing erosion rates within the Western 65 

Himalayas since ca. 15.5 Ma, and in particular after 9 Ma. Use of the International Ocean 66 
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Discovery Program (IODP) boreholes in the Laxmi Basin (Fig. 1)(Pandey et al. 2016b) has the 67 

advantage that the sediment thickness is low (<1.1 km) and the geothermal gradient is 53˚C/km 68 

and 57˚C/km at Sites U1456 and U1457 respectively (Pandey et al. 2016b). Although these are 69 

high values this means that even the base of the section will fall below temperatures required to 70 

cause significant annealing or resetting of fission tracks in apatite, i.e. ~60–110˚C (Green 1989) 71 

and therefore the original cooling history of the bedrock sources will be preserved. All but one of 72 

the samples were recovered from depths shallower than 722 mbsf, implying no more than 38˚C 73 

burial temperature at the present maximum burial depth. The deepest sample (U1456E-19R-3, 74 

10-20 cm) was recovered from a depth of 1103 mbsf but the fission track ages are older than the 75 

depositional age, indicating that this too is not reset., 76 

 Constraining rates of bedrock source cooling caused by erosion driven by rock uplift can 77 

help identify locations of active tectonics and the rates and patterns of mountain growth. 78 

However, climate change may also play a role in relation to variations in precipitation rate that 79 

are linked to the intensity of the South Asian monsoon. This is known to have varied 80 

significantly throughout the Cenozoic (Betzler et al. 2016; Gupta et al. 2015; Kroon et al. 1991; 81 

Prell et al. 1992; Quade et al. 1989). Debate continues concerning the history of strengthening of 82 

the South Asian monsoon, but increasingly there is a consensus that the climate began to dry 83 

after 8 Ma (Behrensmeyer et al. 2007; Clift 2017; Singh et al. 2011), following a period of 84 

maximum intensity in the middle Miocene (Clift et al. 2008). It has been suggested that it is the 85 

strength of the summer monsoon rains during the middle Miocene that resulted in rapid 86 

exhumation of the Greater Himalaya at that time driven by strong erosion (Clift et al. 2008). If 87 

that is true one might predict that the rate of erosion since that time was also coupled with 88 

monsoon intensity. However, work within the foreland sedimentary rocks of the Siwalik Group 89 
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in Nepal shows that the rate of exhumation in the central Nepalese Himalaya remained 90 

essentially constant after 8 Ma (van der Beek et al. 2006). In contrast, the same study argued that 91 

rates of erosion had increased between 8 and 3 Ma in Western Nepal, despite the fact that both 92 

sections lie within the Ganges drainage system, which is wetter than the Indus basin considered 93 

here (Bookhagen & Burbank 2006). In contrast, AFT data from Ocean Drilling Program (ODP) 94 

Sites 717 and 718 on the Bengal fan showed that rapid rates of exhumation of the bedrock 95 

sediment sources to the Ganges-Brahmaputra basin has been ongoing since the middle Miocene 96 

(Corrigan & Crowley 1990). Reappraisal of this data by van der Beek et al. (2006) indicated 97 

relatively constant lag times (i.e., the difference between the depositional age and the AFT 98 

cooling) since 9 Ma, suggestive of uniform erosion rates. 99 

 There are few constraints over how erosion rates might have changed during the 100 

Pleistocene. While some have argued that the onset of northern hemisphere glaciation (NHG) has 101 

intensified rates of erosion during the last couple of million years (Clift 2006; Métivier et al. 102 

1999; Zhang et al. 2001), other workers, drawing on cosmogenic isotope data (Willenbring & 103 

von Blanckenburg 2010), suggest that continental weathering rates have remained essentially 104 

steady-state during the Neogene and especially the Plio-Pleistocene. Such an observation does 105 

not require faster sediment delivery to the ocean, although this was proposed from a global data 106 

compilation implying a steady state supply of sediment spanning tens of millions of years (Sadler 107 

& Jerolmack 2014). Here we provide the first detailed AFT constraints on erosion rates in the 108 

Western Himalaya, within the Indus basin, in order to see whether the temporal evolution in that 109 

region mirrors that found in Nepal and in the Ganges-Brahmaputra drainage basin. 110 

 Over the period since 15.5 Ma considered by this study the Western Himalaya have 111 

experienced significant tectonic changes. The Lesser Himalayas were brought to the surface 112 
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because of duplexing above the Main Boundary Thrust (MBT) (Huyghe et al. 2001; Mugnier et 113 

al. 1994), coupled with focused erosion since the Late Miocene. There is continued debate about 114 

when exposure of the Lesser Himalaya might have occurred. Early studies suggested that the 115 

MBT initiated around 10–11 Ma (Meigs et al. 1995) allowing the Lesser Himalayan Duplex to 116 

form and be uplifted and then eroded. Work from the Siwalik Group in Northwest India points to 117 

an initial exposure of the Lesser Himalaya at ca. 9 Ma followed by more widespread exposure 118 

after 6 Ma (Najman et al. 2009), although this may be only applicable to the Beas River area 119 

(Fig. 1). Nd and zircon U-Pb data from IODP Sites U1456 and U1457 now suggest initial 120 

exposure after 8.3 Ma and widespread unroofing after 1.9 Ma (Clift et al. 2019b). Other 121 

potentially important sources of sediment to the submarine fan include the Nanga Parbat massif 122 

that is located next to the Indus River in the Western Syntaxis (Fig. 1). Provenance studies from 123 

the Indus River downstream of Nanga Parbat indicate that this massif has only limited sediment 124 

generating potential at the present time (Clift et al. 2002b; Garzanti et al. 2005; Lee et al. 2003), 125 

despite the start of uplift ca. 6 Ma (Chirouze et al. 2015). In contrast, its eastern equivalent 126 

(Namche Barwe) is believed to be a major source of sediment to the Brahmaputra (Garzanti et al. 127 

2004; Stewart et al. 2008). Bedrock thermochronology measurements testify to Nanga Parbat 128 

being very rapidly exhumed in the recent geologic past (Zeitler et al. 1993), but this does not 129 

seem to generate much of the sediment in the river downstream of that point (Alizai et al. 2011). 130 

Zircon fission track (ZFT) and Nd isotope data in the western part of the Siwalik ranges in 131 

Pakistan indicate that this massif and other Himalayan units in the western syntaxis may have 132 

become more important as a sediment source after around 6 Ma (Chirouze et al. 2015). The 133 

sedimentary record in the Indus Fan may also been affected by large-scale drainage capture. 134 

Neodymium isotope measurements on samples from an industrial drill site on the Indus shelf, as 135 
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well as limited ODP samples from the upper fan, were used to argue that the eastern tributaries 136 

of the Indus River were only been captured into the modern system after 5 Ma (Clift & Blusztajn 137 

2005). However, this is contradicted by combined ZFT and Nd isotope data that supports relative 138 

stability in drainage patterns but changing rates of erosion in the Himalaya and Karakoram since 139 

the Miocene (Chirouze et al. 2015). 140 

 141 

Regional Setting 142 

 IODP Expedition 355 sampled sediments from the Indus Fan deposited within the Laxmi 143 

Basin offshore western India (Fig. 1). Although the Laxmi Basin is separated from the main 144 

Arabian Basin by the Laxmi Ridge, the bathymetry of the basin and the orientation of active 145 

channels (Mishra et al. 2016) indicates that the primary source of sediment to the coring 146 

locations would be the Indus River, with lesser input from peninsular rivers such as the Tapti and 147 

Narmada. Initial petrographic-based interpretations of the sediments made shipboard during the 148 

expedition suggested that there were limited amounts of sediment delivery from Western India, 149 

and tend to be found only in the youngest parts of the section (Pandey et al. 2016a).  150 

 The Laxmi Basin itself dates from the latest Cretaceous when India began to separate from 151 

the Seychelles (Bhattacharya et al. 1994; Pandey et al. 1995). Following the onset of India-Asia 152 

collision, ca. 50–60 Ma (DeCelles et al. 2014; Najman et al. 2010), the uplift and erosion of the 153 

Himalaya has resulted in a huge flux of sediment into the Arabian Sea. Although the Indus Fan is 154 

much smaller than the Bengal Fan it is nonetheless the second largest sediment body on Earth 155 

and is believed to have accumulated sediment eroded from the mountains at least since 45 Ma 156 

(Clift et al. 2001).  157 
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 Drilling during Expedition 355 recovered a section that penetrated to basement at Site 158 

U1457 (Fig. 2), but because of large-scale mass wasting (Dailey et al. 2019) the most complete 159 

erosional record only spans the last 10.8 m.y., with much of the older sediment either missing, 160 

due to erosion or non-deposition, or not sampled. Coring was undertaken at two sites, Site U1456 161 

in the central part of the Laxmi Basin, as well as at Site U1457 located on the flanks of the 162 

Laxmi Ridge (Fig. 1). In general, the sediment at Site U1456 tended to be coarser grained (Fig. 163 

2). The entire sedimentary cover is also more complete at Site U1456 than at Site U1457. The 164 

coarse-grained, sandy sediment that forms the focus of this study was taken from both sites and 165 

is the product of turbidity current flows. Nonetheless, significant parts of the section are fine-166 

grained muddy facies together with carbonate-rich intervals and these are interbedded with sandy 167 

turbidite material caused by sedimentation on depositional lobes within the middle fan (Fig. 2). 168 

There are also interbeds of calcareous-rich pelagic material that reflect times when the main 169 

Indus-sourced depocentre was located to the west of the Laxmi Ridge, so that the primary clastic 170 

flux from the Indus River was not reaching the drilling area. Because the drilling sites are located 171 

above the carbonate compensation depth (CCD) it was possible to date the age of sedimentation 172 

using a combination of nannofossil and foraminifera biostratigraphy coupled with 173 

magnetostratigraphy that provides a relatively robust age model (Pandey et al. 2016b). Drilling 174 

was able to penetrate a thick mass transport deposit (MTD) deposited just before 10.8 Ma 175 

(Calvès et al. 2015), but at Site U1456 coring was able to recover a short interval below the 176 

MTD, providing a single sample that is substantially older than any of the other sediments 177 

recovered and which has been approximately dated at 15.5 Ma (Pandey et al. 2016a). At Site 178 

U1457 all fan sediment predating the mass wasting event had been removed so that our studies 179 

are restricted to the section younger than 10.8 Ma at that location. 180 
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 We apply the AFT thermochronology dating method to this sediment in order to understand 181 

how the source rocks that provided material to the Arabian Sea evolved in their cooling and 182 

exhumation history since the middle Miocene. Fission track studies are a well-established 183 

method for looking at bedrock unroofing and potentially also sediment provenance if the source 184 

regions themselves are sufficiently well defined and if cooling ages are relatively constant in a 185 

source area (Carter 1999; Green et al. 1989; Laslett et al. 1987). In a complex area like the 186 

western Himalaya cooling ages vary across tectonic blocks and through time so that the 187 

interpretation of the AFT ages is contingent on supporting provenance data and cannot be used to 188 

constrain provenance by themselves. In this study we draw on zircon U-Pb age data from these 189 

same boreholes (Clift et al. 2019b). Simple comparison of modern bedrock AFT ages and detrital 190 

AFT ages in sediments more than around a million years old is not justifiable because the 191 

cooling rates of the bedrock will change on such timescales. 192 

 193 

Methodology 194 

 Low-temperature AFT central ages reflect cooling through 60–125°C over time scales of 1–195 

10 m.y. (Green et al. 1989). Fission tracks form continuously through time at an abundance 196 

determined by the concentration of 238U in the host apatite grain (Haack 1977). The method has 197 

been a widely used and is effective for studying exhumation history and provenance of shallow-198 

buried sediment (Carter 2007; Gallagher et al. 1995). Samples were taken where suitable sandy 199 

material was available at both IODP sites, as shown in Figure 2 and Table 1. Some of the apatites 200 

were extracted from the same samples analysed for detrital zircon U-Pb dating by Clift et al. 201 

(2019b). 202 
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 Following mineral separation AFT analysis was performed at the London Geochronology 203 

Centre based at University College, London, UK. Polished grain mounts of apatite were etched 204 

with 5N HNO3 at 20˚C for 20 seconds to reveal the spontaneous fission-tracks. Subsequently the 205 

uranium content of each crystal was determined by irradiation, which induced fission in a 206 

proportion of the 235U. The induced tracks were registered in mica external detectors. The 207 

samples for this study were irradiated in the irradiated in the FRM 11 thermal neutron facility at 208 

the University of Munich, Germany. The neutron flux was monitored by including Corning glass 209 

dosimeter CN-5, with a known uranium content of 11 ppm, at either end of the sample stack. 210 

After irradiation, sample and dosimeter mica detectors were etched in 40% HF at 20˚C for 25 211 

minutes. Only crystals with sections parallel to the c-crystallographic axis were counted, as these 212 

crystals have the lowest bulk etch rate. To avoid biased results through preferred selection of 213 

apatite crystals the samples were systematically scanned, and each crystal encountered with the 214 

correct orientation was analysed, irrespective of track density. The results of the fission track 215 

analysis are presented in Table 2 and online Supplementary Table 1. Because the chi test, used to 216 

detect extra Poisson variation, does not show how much over dispersion to be present in the 217 

dataset we include the central age and its percentage relative error because this provides a 218 

measure of the extent of age dispersion. It is also useful when there are low track counts (young 219 

ages) as the chi test is unreliable under these conditions.   220 

 221 

Results 222 

 Because all samples showed evidence of over-dispersion we examined the range of single 223 

grain AFT ages in each sample using a combination of kernel density estimates (KDE) plots 224 

following the method of Vermeesch (2012) and the radial diagrams of Galbraith (1990)(Fig. 3). 225 
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Plots that combine both types of data presentation are known as abanico plots (Dietze et al. 226 

2016). In the radial plots the single grain ages are plotted away from a central point on the left 227 

side of each diagram, with higher accuracy measurements plotted closer to the right-hand curved 228 

y-axis against which the ages are measured. This approach allows populations of grains with 229 

similar ages but varying degrees of uncertainty to be identified as arrays. In this particular study 230 

we focus on the identification of a minimum age population extracted using the algorithm of 231 

Galbraith (2005) that clusters in an array and trends towards the y-axis on the right-hand side of 232 

each diagram. This avoids problems associated with a general purpose, multi-component mixture 233 

model that can give a biased estimate of the minimum age towards younger values with 234 

increasing sample size. The radial plots show if there is a single source (single array) or multiple 235 

sources, if there are more than one array. Figure 3 and Table 2 show samples that have a second 236 

age component (P2) as defined by ten or more grains. In all cases the majority of analysed grains 237 

defines the minimum age and represents the time at which the dominant bedrock sources cooled 238 

through the AFT partial annealing zone (PAZ).  239 

In each case we also show the calculated depositional age derived from the shipboard 240 

biostratigraphy and magnetic stratigraphy (Fig. 3). The minimum ages are older than or 241 

concordant with the depositional age, as might be expected in a relatively shallow borehole in 242 

which the temperatures are not elevated above those known to reset fission tracks in apatite 243 

crystals. All samples have minimum ages less than 20 Ma, and P2 AFT ages are all less than 40 244 

Ma (apart from the youngest sample) post-dating the initial collision of India and Asia. There are 245 

particularly noteworthy concentrations of grain ages between 3 and 20 Ma. 50% of samples have 246 

a minimum age younger than 10 Ma. The minimum age gets younger with decreasing 247 

depositional age but not in a systematic way. The age difference between the minimum age and 248 
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deposition age is <5 m.y. for most samples, i.e., short lag times, but increases for samples 249 

deposited between 7.84 and 8.2 Ma, as well as 7.07–7.28 Ma. The youngest sample (U1456A-250 

11H-6, 60-69 cm) is unlike many of the others in showing significantly older AFT ages (Fig. 3).  251 

The youngest deposited sample is anomalous in having a minimum age population of 252 

20.7 Ma, despite only having been deposited around 930 ka (Fig. 3A). This may be due to the 253 

sample containing fewer apatites, with only 24 grains being countable, which is the smallest 254 

number out of all samples analysed. This is in strong contrast with the much younger minimum 255 

ages of the directly underlying samples. It is only the very oldest sample (~15 Ma, U1456E-19R-256 

3, 10–20 cm) which also has a minimum age of that value, but that sample has a short lag time 257 

(Fig. 3W).  We can assess the possible impact of low grain numbers on the critical minimum age 258 

result in Figure 4. This plot shows that there is no correlation between the number of grains and 259 

the minimum age, only reinforcing the fact that samples with low numbers of grains have more 260 

uncertainty in the result, but not causing short lag times. 261 

The core is not altered or veined and the modern maximum burial temperature of the 262 

samples with lag times close to zero is far too cool to have affected the AFT ages. The ages are 263 

within error of the depositional age, not resolvably younger. Although sample U1456D-12R-1 264 

30-36 cm has a minimum age population slightly younger (6.6 ± 1.5 Ma) than the calculated 265 

depositional age (7.0 Ma) but within error of that value and need not be reset. Moreover, the 266 

young ages are also accompanied by older age populations that are also consistent with the 267 

sediment not being thermally reset, as well as with the modern borehole temperatures being well 268 

below the apatite partial annealing zone (556 mbsf (29.4˚C) at Site U1456, 572–590 mbsf (32.6–269 

33.6˚C) at Site U1457).  270 
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 271 

Discussion 272 

The fact that all of our AFT ages are relatively young and mostly postdate widely 273 

accepted times of India-Asia collision is a clear indication that they are derived from 274 

Himalayan/Karakoram sources supplied by the Indus River and, with the exception of the 275 

youngest sample, not from peninsular India. Ancient rocks of the Indian peninsula have not been 276 

substantially deformed and uplifted during the Cenozoic and basement apatite fission track ages 277 

are mostly Jurassic-Cretaceous. Although they range as young as 54 Ma (Gunnell et al. 2003; 278 

Kalaswad et al. 1993), 95% of the ages measured are older than 100 Ma, averaging 228 Ma (Fig. 279 

5H). This is somewhat older than most of the grain ages in Sample U1456A-11H-6, 60-69 cm., 280 

but does match the P2 older population in that sample (Table 2). Nonetheless, the minimum age 281 

population of 20.7±3.8 Ma requires a Himalaya-Karakoram provenance for 14 of the 24 grains 282 

measured. U-Pb zircon ages from this same sample (Clift et al. 2019b) show that 8.25% of the 283 

grains date to <200 Ma that require derivation from the Indus River because such zircon ages can 284 

only be generated by erosion from Kohistan or Karakoram sources. Zircon grains older than 300 285 

Ma could be from the peninsula or the Himalaya. This youngest sample seems likely to be of 286 

mixed provenance, with material from both the Indus and the peninsula. For the other samples 287 

the AFT data argue strongly for the sand at these drilling sites being entirely derived from the 288 

Indus River because they are generally much younger than AFT ages from the western margin of 289 

peninsular India and broadly consistent with the AFT ages derived from sands that are definitely 290 

of Indus derivation (Clift et al. 2004; Clift et al. 2010).  291 



 14 

Some information can also be derived about where the sediments may be coming from 292 

within the possible source ranges if we refer to the bedrock data that has been measured onshore, 293 

as summarized in Figure 5. Comparison of these sources and detrital data is only valid for the 294 

youngest sediments because young bedrock AFT ages do not inform us about the cooling of 295 

these sources in the older geologic past, only the cooling of the rocks now exposed. We note that 296 

the different ranges within the Indus basin have a number of distinctive peaks and that some of 297 

these are distinct in terms of their AFT age spectra. We note that the Greater and Lesser 298 

Himalaya have relatively similar fission track ages, clustering around 3–4 Ma, but with some 299 

ranging to ca. 1 Ma, at least in the Sutlej Valley (Thiede et al. 2004), and that these also overlap 300 

with ages known from the Karakoram, especially the eastern Karakoram (Wallis et al. 2016) and 301 

the Yasil Dome lying in the Karakoram immediately north of the Nanga Parbat Massif (Poupeau 302 

et al. 1991). The Karakoram however, also have bedrock AFT ages that range to older values, 303 

suggestive of earlier exhumation in at least parts of that block, most notably in the west and their 304 

continuation into the Hindu Kush (Zhuang et al. 2018). The very youngest grains are measured 305 

around the Nanga Parbat Massif (Zeitler 1985), while the oldest are found in the Transhimalayan 306 

Ladakh Batholith (Kirstein et al. 2009) and Deosai Plateau (van der Beek et al. 2009). The 307 

Tethyan Himalaya have also yielded older AFT ages in the central Himalaya (Li et al. 2015), but 308 

have not been dated within the Indus catchment. Uplift and erosion in the mountains around the 309 

Indus Suture and located to the north of the Greater Himalaya are widely accepted to have 310 

initiated earlier and then mostly slowed as the exhumation shifted into the Greater and Lesser 311 

Himalayan ranges (Searle, 1996).  312 

Although many of the measured fission tracks at Nanga Parbat have ages of less than 1 313 

Ma (Zeitler et al. 1989), clearly this could not have been the case before 1 Ma, when the fastest 314 
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cooled grains must have had ages within error of or older than 1 Ma. Lag times could however 315 

have been short prior to 1 Ma. Consequently, direct comparison of the modern bedrock with the 316 

detrital ages in old sediments is not appropriate for most of our samples. Because the cooling 317 

rates of bedrock sources change on timescale of >106 yr, not only would the AFT ages have been 318 

older in the past but we cannot assume that these sources still had the same lag times in the 319 

geologic past. Different, higher temperature thermochronometers can constrain exhumation rates 320 

during those earlier times and provide clues about lag times. We can however deduce that 321 

because many of the grains AFT ages are relatively young (<15 Ma) and their lag times are short 322 

that they were probably derived from fast exhuming sources in the Himalaya, Nanga Parbat or 323 

Karakoram (Zeitler et al. 1993; Zhuang et al. 2018), rather than in Kohistan, the Transhimalaya 324 

or Tethyan Himalaya where uplift and exhumation was mostly older. The cooling histories of 325 

these latter sources imply that their AFT lag times would be mostly long during the Late 326 

Miocene-Present (Fig. 5) (Kirstein et al. 2009; Krol et al. 1996; Searle 1996). Although some 327 

young AFT ages <6.3 Ma have been recorded in the Ladakh Transhimalayan Batholith along the 328 

Shyok Suture (Kirstein et al. 2009) these represent quite a small part of that tectonic block. 329 

Zircon U-Pb ages from the same IODP sites imply that the Transhimalaya has not been a 330 

dominant source during the period targeted by this study (maximum of 28% at 15.5 Ma and this 331 

is likely a large overestimate because the Karakoram and Transhimlaya overlap in zircon U-Pb 332 

ages) (Clift et al. 2019b). 333 

The prevalence of short AFT lag times implies rapid exhumation in the dominant 334 

sediment-producing sources close to the time of sedimentation. The AFT data require that little 335 

sediment was stored for significant periods of geologic time between erosion in the mountain 336 

sources and sedimentation on the Indus submarine fan because the difference/lag between 337 
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minimum ages and deposition is typically <4 m.y. (75% of samples), representing an upper limit 338 

to the storage time. The lag time of a grain largely represents the time between cooling and 339 

erosion. While the lag time also includes time spent during sediment transport, study of the 340 

Quaternary Indus system indicates transport times of no more than ~105 y for the bulk of the 341 

sediment delivered to the deep basin (Clift & Giosan 2014). Some of the sediment may be 342 

recycled from foreland basin sedimentary rocks of the Siwalik Group and this would introduce 343 

an additional lag into the sediment transport history. Secondary AFT age populations between 15 344 

and 38 Ma (Table 2) would fit with this type of recycling. We can discount that these older ages 345 

are coming from direct erosion of the slower cooled Ladakh Batholith or Tethyan Himalaya 346 

because heavy mineral studies (Garzanti et al. 2005), trace element characteristics of detrital 347 

amphiboles (Lee et al. 2003) and zircon U-Pb ages (Alizai et al. 2011) from the trunk Indus 348 

River close to the Himalayan front show dominance by the Karakoram (especially the Southern 349 

Karakoram Metamorphic Belt) over other sources in the modern upstream basin. That the 350 

Siwalik Group sedimentary rocks themselves have not been entirely reset in AFT during burial is 351 

known from studies in central Nepal (van der Beek et al. 2006) and these ranges could thus be a 352 

source of the older AFT ages measured. Quantifying the amount of recycling out of the Siwalik 353 

Ranges is impossible for our data because older grains could come from slow cooling sources or 354 

from the Siwalik Group. However, the high abundance of short lag time grains suggests that the 355 

degree of this recycling cannot be too large. Rates of incision in modern gorges cutting the 356 

Siwalik Group in Nepal have been used to estimate that they account for no more than 15% of 357 

the total flux (Lavé & Avouac 2001), while an isotope-based mass balance for the Ganges basin 358 

indicates <10% of the mass flux in that drainage is from the Siwalik Group (Wasson 2003). A 359 

contribution on that order to the Indus Basin would be consistent with the AFT data presented 360 
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here. The AFT data by themselves cannot resolve erosion from the Siwaliks, as they share older 361 

AFT ages with sources in the Tethyan Himalaya, Kohistan and Transhimalaya. 362 

On shorter timescales if sediment was being buffered on the floodplains, in the delta or 363 

on the continental shelf then this is expected to have occurred only for a short amount of time, 364 

essentially tens of thousands of years (Li et al. 2019). Storage and recycling on million-year 365 

timescales would have resulted in longer lag times. When the lag times of our samples are 3–4 366 

m.y. or some of this time must have been spent during transport. With the exception of storage 367 

and recycling via Siwalik Group foreland sequences discussed above the assumption is that most 368 

of this time would be spent prior to exposure and erosion because estimates of transport time in 369 

the Quaternary Indus are just 105 y for the bulk of the sediment delivered to the deep basin (Clift 370 

& Giosan 2014). Modern bedrock AFT data from the Greater and Lesser Himalaya and 371 

Karakoram indicate this order of lag time at the present day (Fig. 5), without factoring in much 372 

additional transport time. Our data are broadly consistent with the idea of rapidly uplifting 373 

mountains being strongly eroded and so supplying most of the sediment into the Indus River 374 

during the period of study since 15.5 Ma. 375 

Combined Nd isotope and detrital zircon U-Pb age data from bulk sediment samples from 376 

Sites U1456 and U1457 show that there was a change in provenance starting around 5.7 Ma 377 

(Clift et al. 2019b). This analysis indicates more material coming from the Greater and Lesser 378 

Himalaya and relatively less from the Karakoram after this time. The range of lag times in 379 

sediments younger than 7.0 Ma is similar to those found at the Indus delta during the phase of 380 

strong summer monsoon in the early Holocene, i.e. 2–5 m.y. (Fig. 6), when the provenance 381 

constraints indicates that these were preferentially derived from Greater and Lesser Himalayan 382 

sources (Clift et al. 2019b). In contrast, sediments older than 7.0 Ma have longer lag times (3.5–383 
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8.8 m.y., average 6.0 m.y.) and are inferred to be more derived from the Karakoram, based on 384 

their zircon U-Pb age spectra (Fig. 6) (Clift et al. 2019b). The fact that lag times of pre-7.0 Ma 385 

samples are longer, like Indus Delta LGM sediments that have an AFT central age of 9 ± 1 Ma 386 

(Clift et al. 2010) is consistent with a dominant Karakoram source.  387 

That the Nd isotope provenance data change at around the same time as the AFT lag 388 

times (after 5.7 Ma; Fig. 6) supports the idea that a change in provenance may account for at 389 

least part of the changing AFT lag times at that time. The absence of the very short lag time 390 

samples does mean that after 5.7 Ma there are no longer any significant fast eroding ranges in the 391 

catchment. As noted above, the Crystalline Inner Lesser Himalaya are known to be experiencing 392 

unroofing after ~6 Ma, at least in the vicinity of the Beas River catchment (Najman et al. 2009) 393 

and the shift in the general character of the AFT age populations after 5.7 Ma may in large part 394 

simply reflect more sediment delivery from the Greater and Lesser Himalayas, potentially related 395 

to tectonic imbrication and rock uplift (Bollinger et al. 2004; Huyghe et al. 2001; Webb 2013). 396 

Such a shift is consistent with the evolving provenance data in Laxmi Basin (Clift et al. 2019b). 397 

The structural reconstructions of Webb (2013) for the western Himalaya propose that both the 398 

Greater and Lesser Himalaya remained buried under the Tethyan Himalaya until after 5.4 Ma. 399 

This would imply that the source of rapidly cooled grains before that time would be from the 400 

Karakoram and Tethyan Himalaya.  401 

 The AFT ages can be used to constrain changing rates of exhumation in the bedrock 402 

sources. Comparing depositional age against the AFT minimum age populations allows us to 403 

assess the lag time between cooling of bedrock sources as they passed through the 60–110˚C 404 

partial annealing zone and their final deposition in the deep water of the Indian Ocean (Fig. 6). In 405 

our analysis we further compare our results with those similar aged fluvial sedimentary rocks 406 
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from the Siwalik Group in Western and Central Nepal (van der Beek et al. 2006), as well as from 407 

the Bengal Fan collected by ODP Leg 116 (Corrigan & Crowley 1990). It is clear that many of 408 

these minimum age groups have relatively short lag times, which indicates fast cooling and 409 

exhumation of bedrock sources. We note that both the oldest (15.5 Ma) sample from the Laxmi 410 

Basin and a slightly younger sample from the Bengal Fan show lag times close to 4 m.y. in the 411 

middle Miocene. This would imply exhumation rates of 1.1–1.4 km/m.y. assuming 25–35˚C/km 412 

geothermal gradients. 413 

Unfortunately, we have little information between that time and ~8.5 Ma when the next 414 

youngest dateable sandy sediment was deposited and preserved at the drilling sites. Although one 415 

of the minimum age groups still lags by ~4.2 m.y., we note that this there is some scatter to 416 

longer lag times of up to 8.8 m.y. between 8.5 and 7.0 Ma and with large uncertainties. 417 

Combined zircon U-Pb (40–70 and 70–120 Ma grains) and bulk sediment Nd isotope (eNd values 418 

> -10) provenance data indicate that much of the sediment at that time was derived from the 419 

Karakoram (Clift et al. 2019b). The zircon U-Pb budget over-represents the net flux from the 420 

Himalaya because these bedrocks are >2.2 time more fertile with regard to zircon than the 421 

Karakoram and Transhimalaya.  422 

After 7.0 Ma lag times shortened significantly. Three samples from the Laxmi Basin 423 

drilling sites are within error of the depositional age between 7.0 and 5.7 Ma, requiring 424 

exhumation rates that were so rapid that we are unable to constrain the duration between cooling 425 

through the PAZ (60–110˚C) and sedimentation, i.e., lag times close to zero. This implies a 426 

maximum rate of cooling in the sources at that time. All three of the fast cooling samples have 427 

accompanying zircon U-Pb ages that show that they continue a trend towards more Himalayan 428 

erosion but that there is not a sharp contrast with the sediment deposited before 7.0 Ma. After 5.7 429 
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Ma the change in Nd isotopes is especially marked implies that a change in provenance may be 430 

responsible for the slowing of exhumation rates. Nonetheless, one sample, U1457C-43R-1 55-63 431 

cm, deposited at 5.78 Ma, has a minimum age lag time 3.13 m.y., longer than the others. This 432 

implies that not all sources were supplying large volumes of sediment at all times and that not all 433 

bedrock sources were exhuming so quickly. 434 

Although provenance data indicate mostly Karakoram sources, these rapidly cooled 435 

grains could also be derived from the Himalaya. Zircon U-Pb ages allow us to discriminate 436 

between erosion of Karakoram (40–120 Ma and Himalayan (>300 Ma) sources but we only 437 

know that these are the largest sources at that time. However, the zircon ages only apply to these 438 

minerals and the provenance cannot be transferred to the apatites so that we only know that there 439 

were rapidly cooling areas between 7.0 and 5.7 Ma but not which range they are located in. 440 

However, because there are large numbers of grains in the minimum age group it might 441 

reasonably be expected that these are derived from bedrocks sources that also supply large 442 

volumes of other mineral types. Between 7.0 and 5.7 Ma the longest lag time was 3.13 m.y. in 443 

the sediment deposited at 5.87 Ma. This indicates an average cooling rate of at least 444 

35.1±9.7˚C/m.y., faster than the cooling rates of 12.5 to 26.1˚C/m.y. between 8.2 and 7.0 Ma. 445 

These are faster rates than those recorded in the Siwalik Group from Nepal (van der Beek et al. 446 

2006), as well as sparse data from the Bengal Fan (Corrigan & Crowley 1990), although they are 447 

within the uncertainties of the peak rates in Nepal at that time. However, in Nepal the sources 448 

must have been Himalayan, not Karakoram. In the youngest part of the section (<4 Ma), which is 449 

more dominated by Himalaya erosion (Clift et al. 2019b) these very short lag times are not 450 

visible and are always more than 1.93 m.y., equivalent to approximate exhumation rates of ~2.3–451 

1.6 km/m.y. The moderate exhumation rates after 4 Ma compare with data from both the Bengal 452 
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Fan and from the Nepalese part of the Himalayan foreland. Both these sediment sequences are 453 

dominated by Himalayan erosion (Bouquillon et al. 1990). Slowing of exhumation in the Indus 454 

basin after 5.7 Ma is consistent with data from western Nepal (Karnali), but the slowing from 455 

peak rates at 7.0 to 5.7 Ma is in contrast to conclusions of work from central Nepal (Surai and 456 

Tinau Khola) that argued for relatively steady state cooling in that part of the mountain range 457 

(van der Beek et al. 2006). The very youngest sample deposited at 930 ka stands out as having by 458 

far the largest lag time and is inferred have a unique source, likely a mixture of sediment from 459 

the Indus River and Peninsular India.  460 

 We can compare this pattern of accelerating exhumation before 7.0 Ma and then slowing 461 

after 5.7 Ma with the climatic history (Fig. 6), while recognizing the shift in provenance that is 462 

occurring at the same time. One of the most popular long-term proxies for monsoon intensity in 463 

the Arabian Sea is the relative abundance of G Bulloides offshore the margin of Arabia. The 464 

abundance of G. Bulloides is largely a function of the availability of nutrients derived from 465 

upwelling caused by the summer monsoon rains (Curry et al. 1992). There is little evidence for 466 

such strong upwelling prior to around 13 Ma (Betzler et al. 2016). A general intensification of 467 

upwelling is noted after 5.3 and 3.0 Ma (Gupta et al. 2015; Huang et al. 2007) (Fig. 6). However, 468 

upwelling is not a direct proxy of rainfall and this apparent intensification does not reflect the 469 

delivery of summer rains to the mountain front, because this proxy does not correlate with other 470 

climatically sensitive indicators (Clift 2017).  471 

Stable oxygen isotope data from the foreland basin instead agree with chemical 472 

weathering data from the South China and Arabian Seas in arguing for relatively wet conditions 473 

in the middle Miocene between 10 and 12 Ma (Dettman et al. 2001), followed by a decrease in 474 

humidity particularly after around 6–8 Ma (Clift 2017; Singh et al. 2011). Moisture delivery to 475 
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this area from the winter Westerlies is also reconstructed to reduce around 7 Ma (Vögeli et al. 476 

2017). The increasing lag time seen in the minimum age populations after 5.7 Ma would be 477 

consistent with slower erosion and could be linked to weaker monsoon rainfall. Weaker monsoon 478 

and Westerly rains would also reduce discharge and potentially slow the transport of sediment 479 

across the flood plains. Increased aridity is consistent with decreasing strength of chemical 480 

weathering seen in Indus Marine A-1 located on the Indus shelf (Clift et al. 2008), as well as Site 481 

U1456 (Clift et al. 2019a), but largely postdates the carbon isotope transition from 8 to 6 Ma in 482 

the foreland basin (Quade et al. 1989).  483 

The acceleration in exhumation rates from 7.8 to 7.0 Ma generally coincides with the 484 

climatic drying, which may seem counterintuitive. However, this also assumes that stronger 485 

rains, sometimes modulated through glaciation, always increase erosion. There is evidence that 486 

drier conditions, especially when this involves heightened seasonality, can increase erosion 487 

provided the drying is not too extreme, but sufficient to reduce vegetation cover that reduces soil 488 

erosion (Giosan et al. 2017). There is no evidence that the period of fast erosion at 5.7–7.0 Ma 489 

was caused by faster India and Asia convergence. Indeed, convergence rates appear to have 490 

slowed gradually during the Cenozoic (Clark 2012).  491 

 492 

Conclusions 493 

 Apatite fission track ages derived from turbidite sediments from IODP Sites U1456 and 494 

U1457 in the Laxmi Basin, eastern Arabian Sea, provide an opportunity to reconstruct changing 495 

exhumation rates in the western Himalaya and Karakoram since 15.5 Ma, and especially since 9 496 

Ma. AFT ages are mostly <50 Ma and demonstrate that the sediment is derived from the Indus 497 
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River, not peninsular India, except in the case of the youngest sample, deposited at 0.93 Ma. 498 

Moreover, most samples show minimum age populations that are only slightly older than the 499 

depositional age, implying fast rates of exhumation in the sources through this time. Lag times of 500 

~4 m.y. in the Middle Miocene imply exhumation rates of 1.1–1.4 km/m.y. After a period of 501 

longer lag times (~6 m.y.) between 8.5 and 7.8 Ma these reach a minimum from 7.0 to 5.7 Ma, 502 

when lag times were within error of zero. Provenance U-Pb zircon and Nd isotope data indicate 503 

erosion dominantly in the Karakoram, but the AFT ages could have also come from Himalayan 504 

sources, which were also important contributors at this time. The AFT data alone do not allow us 505 

to discriminate which of the two ranges contained the fast exhuming sources. After 5.7 Ma lag 506 

times lengthened to ~4.5 Ma, and exhumation rates slowed to 2.3–1.6 km/m.y. at the same time 507 

that sediment supply came progressively more from the Himalaya and relatively less from the 508 

Karakoram.  509 

The time of peak exhumation correlates with the transition to a drier climate in the 510 

foreland basin and of a weakening Westerly Jet. Erosion rates since 5.7 Ma are comparable or 511 

slightly faster than those seen in the Nepalese parts of the Himalaya and the Bengal Fan. Slowing 512 

exhumation rates after 5.7 Ma correlate with a drying climate and weaker summer monsoon rains 513 

in the Late Miocene. There is a general shift in the AFT age populations from longer lag times, 514 

more similar to the glacial era Indus River and associated with dominant erosion in the 515 

Karakoram prior to 7 Ma, to shorter lag times and more erosion of the Himalaya, similar to the 516 

Holocene Indus River after 5.7 Ma. The acceleration of exhumation as the climate dried between 517 

7.8 and 7.0 Ma seems to imply a dominant tectonic control of erosion. The AFT data support 518 

models that imply a non-linear relationship between summer monsoon rain strength and the 519 

erosion of the western Himalaya. 520 
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Figure Captions 530 

 531 

Figure 1. Shaded bathymetric and topographic map of the Arabian Sea area showing the location 532 

of the drilling sites within the Laxmi Basin. Map also shows the primary source ranges and the 533 

major tributary systems of the Indus River, as well as smaller peninsular Indian rivers that may 534 

have provided material to the drill sites. Magnetic anomalies are from Miles et al. (1993). KK =  535 

Karakoram; NP = Nanga Parbat; K = Karnali; S = Surai Khola; T = Tinau Khola. 536 

 537 

Figure 2. Simplified lithologic logs of the two drill sites considered in this study. Black arrows 538 

show the location of the samples analysed. MTD = Mass Transport Deposit. 539 

 540 

Figure 3. Radial plots and associated KDE spectra (abanico plots) showing the range of apatite 541 

fission track ages for each of the samples considered within the study (Galbraith 1990). Ns—542 

number of spontaneous fission tracks; Ni—number of induced tracks. Single ages are plotted 543 

with standard errors according to their precision (1/σ on the ‘x’ axis). The error attached to each 544 

plotted point is standardized on the y scale. The value of the age and the 2σ uncertainty can be 545 

read off the radial axis by extrapolating lines from point 0,0 through the plotted age. 546 

 547 

Figure 4. Cross plot of numbers of grains compared to minimum ages with 2s uncertainties 548 

displayed. There is no correspondence between the numbers of grains and the minimum age that 549 

might bias the result of the lag time analysis. 550 
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 551 

Figure 5. KDE plots for the apatite fission track central ages of potential bedrock sources within 552 

the headwaters of the Indus basin. Nanga Parbat data are from Warner et al. (1993), and Zeitler 553 

(1985). Greater Himalaya data are from Kumar et al. (1995), Jain et al. (2000) and Thiede et al. 554 

(2004). Lesser Himalaya data are from Thiede et al. (2004) and Vannay et al. (2004). Karakoram 555 

data are from Foster et al. (1994), Zeitler (1985), Wallis et al. (2016) and Poupeau et al. (1991). 556 

Kohistan data are from Zeitler (1985) and Zeilinger et al. (2001). Transhimalaya data are from 557 

Kirstein et al. (2009; 2006), and Clift et al. (2002a). Tethyan Himalaya data are from Li et al. 558 

(2015) and unpublished from Andrew Carter (UCL, 2017). Indian Peninsula data are from 559 

Gunnell et al. (2003) and Kalaswad et al. (1993). 560 

 561 

Figure 6. Lag time plot of detrital apatite fission track minimum ages showing the lag time 562 

between the cooling and depositional ages. Note the minimum lag time achieved between 9 and 563 

6 Ma. Siwalik data from Nepal is from van der Beek et al. (2006), Bengal Fan data is from 564 

Corrigan and Crowley (1990). Monsoon records of G. Bulloides from Huang et al. (2007), 565 

foreland basin d14C record from Quade et al. (1989). Sediment budget for Indus Fan from Clift 566 

(2006). Evolution in the age spectra of zircon U-Pb ages and eNd values is from Clift et al. 567 

(2019b). Stippled area shows the time of the climatic transition to drier conditions in the foreland 568 

basin. 569 

 570 

Table 1. List of the samples with their depths and calculated depositional ages. Those samples 571 

also analysed for detrital U-Pb zircon dating by Clift et al. (2019b) are highlighted. 572 
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 573 

Table 2. Summary of apatite fission track analytical data. Track densities are (x106 tr cm-2) 574 

numbers of tracks counted (N) shown in brackets. Analyses by external detector method using 575 

0.5 for the 4p/2 p geometry correction factor. Ages calculated using dosimeter glass CN-5; 576 

(apatite) zCN5 =338±5; calibrated by multiple analyses of IUGS apatite and zircon age standards 577 

(Hurford 1990). Pc2 is probability for obtaining c2 value for v degrees of freedom, where v = no. 578 

crystals – 1. Central age is a modal age, weighted for different precisions of individual crystals 579 

(see Galbraith (1990)). Minimum age model after Galbraith (2005). P2 used peak fitting 580 

algorithm of Galbraith and Green (1990) where there are > 10 grains. 581 

 582 

Supplementary Table 1. Single grain apatite fission track data. 583 

 584 

  585 
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Lab No. IODP Sample Name Depositional 
Age (Ma) 

Depth 
(mbsf) 

AFT 
Minimum 
Age (Ma) 

2s 
(Ma) 

Number 
of 

grains 

Zircon 
U-Pb 
ages 

134-1 U1456A-11H-6 60-69 cm 0.93 97.60 20.70 3.80 24 Yes 
134-2 U1456A-26F-3 50-58 cm 1.32 185.91 3.60 0.85 62  

134-3 U1456A-51F-3 100-110 
cm 1.56 302.09 3.90 1.40 44 

Yes 

134-4 U1456A-61F-3 40-50 cm 1.92 345.32 6.50 1.10 45 Yes 
177-1 U1456A-70F-2 10-16 cm 3.02 386.73 5.70 1.50 75 Yes 
177-12 U1457C-31R-1 94-100 cm 3.17 474.25 5.10 1.80 52  
177-13 U1457C-33R-3 10-17 cm 3.43 499.10 6.40 1.20 49 Yes 
177-2 U1456C-45X-3 45-51 cm 3.57 459.09 8.48 0.75 65  
134-6 U1456D-5R-1 12-20 cm 5.72 487.98 9.30 2.20 50 Yes 
177-14 U1457C-41R-2 20-26 cm 5.78 572.16 5.91 0.83 46  
177-15 U1457C-42R-1 80-88 cm 5.82 580.40 6.40 1.10 55  
177-16 U1457C-43R-1 55-63 cm 5.87 590.53 9.00 1.20 57 Yes 
177-3 U1456D-12R-1 30-36 cm 7.00 556.45 6.60 1.50 52  
177-4 U1456D-13R-1 30-38 cm 7.07 566.35 13.20 7.30 30 Yes 
177-5 U1456D-15R-1 55-61 cm 7.28 586.00 15.80 1.90 50  
177-6 U1456D-19R-2 20-26 cm 7.66 625.73 11.90 1.80 40  
177-17 U1457C-51R-4 80-88 cm 7.78 675.16 12.00 3.20 51  
134-7 U1456D-22R-1 73-83 cm 7.84 653.50 15.48 0.97 69 Yes 
134-10 U1457C-61R-1 8-18 cm 7.99 769.36 14.00 3.10 42  
177-8 U1456D-26R-2 37-43 cm 8.09 693.78 14.90 1.60 55  

177-9 U1456D-27R-2 100-106 
cm 8.15 704.43 16.97 0.98 69 

 

177-10 U1456D-28R-1 40-46 cm 8.20 711.98 14.20 1.80 72  
134-8 U1456D-29R-2 24-34 cm 8.27 722.60 11.80 5.30 64 Yes 
134-9 U1456E-19R-3 10-20 cm 15.58 1102.95 20.20 1.40 75 Yes 

 918 

Table 1 919 

  920 



 921 
 922 

 Lab No Sample Dep. Age No. of Dosimeter        Central Age Minimum 
Age 

P2 
Age 

   (Ma) grains rd Nd rs Ns ri Ni Pc2 RE% (Ma) (Ma) (Ma) 
A 134-1 U1456A-11H-6 60-69 cm 0.93 24 1.583 4388 0.798 218 3.858 1440 0 111 61.2±14.9 20.7±3.8 223±28 
B 134-2 U1456A-26F-3 50-58 cm 1.32 62 1.583 4388 0.108 308 3.555 11836 0 79 7.3±0.9 3.6±0.9 13.4±1.3 
C 134-3 U1456A-51F-3 100-110 cm 1.56 44 1.583 4388 0.191 298 6.856 12192 0 70 6.8±0.9 3.9±1.4 7.2±0.9 
D 134-4 U1456A-61F-3 40-50 cm 1.92 45 1.583 4388 0.178 349 5.498 11649 0 35.2 8.1±35.2 6.5±1.1  
E 177-1 U1456A-70F-2 10-16 cm 3.02 75 1.215 3367 0.206 446 4.539 11389 0 54.2 8.2±0.7 5.7±1.5 15.5±2.3 
F 177-12 U1457C-31R-1 94-100 cm 3.17 75 1.215 3367 0.171 326 4.710 10359 0 51.5 6.8±0.6 5.1±1.8 12.7±2.1 
G 177-13 U1457C-33R-3 10-17 cm 3.43 49 1.215 3367 0.211 313 4.528 8601 0 50.8 7.7±0.8 6.4±1.2  
H 177-2 U1456C-45X-3 45-51 cm 3.57 65 1.215 3367 0.349 474 4.737 9089 0 160 12.9±2.7 8.5±0.8  
I 134-6 U1456D-5R-1 12-20 cm 5.72 50 1.583 4388 0.272 314 6.211 7830 0 42.4 11.2±1.0 9.3±2.2  
J 177-14 U1457C-41R-2 20-26 cm 5.78 46 1.215 3367 0.186 236 3.801 6317 0 180 11.4±3.1 5.9±0.8  
K 177-15 U1457C-42R-1 80-88 cm 5.82 55 1.215 3367 0.179 361 4.073 9719 0 160 7.8±0.8 6.4±1.1 15.9±2.6 
L 177-16 U1457C-43R-1 55-63 cm 5.87 80 1.215 3367 0.389 528 5.048 8747 0 12.4 13.7±1.6 9.0±1.2 29.4±1.2 
M 177-3 U1456D-12R-1 30-36 cm 7.00 52 1.215 3367 0.241 347 4.004 6997 0 53.8 10.7±1.0 6.6±1.7 17.7±1.7 
N 177-4 U1456D-13R-1 30-38 cm 7.07 30 1.215 3367 0.297 124 5.000 2061 2.1 44.7 11.4±1.5 11.4±1.5  
O 177-5 U1456D-15R-1 55-61 cm 7.28 50 1.215 3367 0.362 372 3.718 4683 0 39.2 16.5±1.3 15.8±1.9  
P 177-6 U1456D-19R-2 20-26 cm 7.66 40 1.215 3367 0.546 457 4.714 4931 0 73.4 19.9±2.6 11.9±1.8 28.0±4.7 
Q 177-17 U1457C-51R-4 80-88 cm 7.78 51 1.215 3367 0.326 430 4.140 5605 0 40 14.7±1.2 12.0±3.2 19.9±1.6 
R 134-7 U1456D-22R-1 73-83 cm 7.84 80 1.583 4388 0.424 799 6.226 12387 0 44.6 18.6±1.2 15.5±0.9  
S 134-10 U1457C-61R-1 8-18 cm 7.99 42 1.583 4388 0.353 468 5.490 7570 0  14.3 16.1±1.0 14.0±3.1  
T 177-8 U1456D-26R-2 37-43 cm 8.09 55 1.215 3367 0.337 403 3.651 5056 0 48.9 18.4±1.7 14.9±1.6  
U 177-9 U1456D-27R-2 100-106 cm 8.15 92 1.215 3367 0309 605 3.710 7958 0 41.8 16.0±1.0 16.9±0.9  
V 177-10 U1456D-28R-1 40-46 cm 8.20 72 1.215 3367 0.499 639 5.203 7453 0 73.3 18.4±1.8 14.2±1.8 21.1±1.9 
W 134-8 U1456D-29R-2 24-34 cm 8.27 72 1.583 4388 0.424 639 5.508 9347 0 48.6 19.3±1.4 11.8±5.3 38.8±3.8 
X 134-9 U1456E-19R-3 10-20 cm 15.58 75 1.583 4388 0.462 873 4.957 9653 0 55.9 25.9±2.0 20.2±1.4  

 923 
Table 2. Summary of apatite fission track analytical data. Track densities are (x106 tr cm-2) numbers of tracks counted (N) shown 924 
in brackets. Analyses by external detector method using 0.5 for the 4p/2p geometry correction factor. Ages calculated using 925 
dosimeter glass CN-5; (apatite) zCN5 =338±5; calibrated by multiple analyses of IUGS apatite and zircon age standards (Hurford, 926 
1990). Pc2 is probability for obtaining c2value for v degrees of freedom, where v = no. crystals – 1. Central age is a modal age, 927 
weighted for different precisions of individual crystals (see Galbraith (1990)). Minimum age model after Galbraith (2005). P2 928 
used peak fitting algorithm of Galbraith and Green, (1990) where there are >10 grains. 929 

 930 
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