94 research outputs found

    Educator Self-Care: How do we save the lifeguards?

    Get PDF
    Educator Self-Care: How do we save the lifeguards? The impact of an educator cannot be dismissed especially when we consider that they are entrusted with a very difficult responsibility of cultivating productive and knowledgeable citizens. However, what happens when educators are exposed to trauma, either directly or indirectly? With the pressures of academic and behavior achievement surmounting, what can schools do to support their teachers who are entrusted with our future leaders? Coastal Academy GNETS will present a framework that is analogous to the Drowning Chain of Survival for Lifeguards to meet this growing need. Participants will gain an awareness of the impact of trauma on educators as well as strategies for schools to implement so that we protect our most valuable resources; the teacher. In addition, we will provide examples of how Coastal Academy GNETS is meeting the needs of our educators in this area of concern which includes a look into our Healing Rooms, creating a Plan of Connection, and forming a Compassion Team

    Effects of concurrent intravenous morphine sulfate and naltrexone hydrochloride on end-tidal carbon dioxide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Respiratory depression, a potentially fatal side-effect of opioid-overdose, may be reversed by timely administration of an opioid antagonist, such as naloxone or naltrexone. Tampering with a formulation of morphine sulfate and sequestered naltrexone hydrochloride extended release capsules (MS-sNT) releases both the opioid morphine and the antagonist naltrexone. A study in recreational opioid-users indicated that morphine and naltrexone injected in the 25:1 ratio (duplicating the ratio of the formulation) found MS-sNT reduced morphine-induced euphoric effects vs intravenous (IV) morphine alone. In the same study, the effects of morphine + naltrexone on end-tidal carbon dioxide (EtCO<sub>2</sub>), a measure of respiratory-depression, were evaluated and these data are reported here.</p> <p>Methods</p> <p>Single-center, placebo-controlled, double-blind crossover study. Non-dependent male opioid users were randomized to receive single IV doses of placebo, 30 mg morphine alone, and 30 mg morphine + 1.2 mg naltrexone. EtCO<sub>2 </sub>was measured by noninvasive capnography.</p> <p>Results</p> <p>Significant differences in EtCO<sub>2 </sub>least-squares means across all treatments for maximal effect (E<sub>max</sub>) and area under the effect curve (AUE<sub>0-2</sub>, AUE<sub>0-8</sub>, AUE<sub>0-24</sub>) were detected (all p ≤ 0.0011). EtCO<sub>2 </sub>E<sub>max </sub>values for morphine + naltrexone were significantly reduced vs morphine alone (42.9 mm Hg vs 47.1 mm Hg, p < 0.0001) and were not significantly different vs placebo (41.9 mm Hg). Median time to reach maximal effect (TE<sub>max</sub>) was delayed for morphine + naltrexone vs morphine alone (5.0 h vs 1.0 h).</p> <p>Conclusions</p> <p>Results provide preliminary evidence that the naltrexone:morphine ratio within MS-sNT is sufficient to significantly reduce EtCO<sub>2 </sub>when administered intravenously to non-dependent male recreational opioid-users. Further studies with multiple measures of respiratory-function are warranted to determine if risk of respiratory depression is also reduced by naltrexone in the tampered formulation.</p

    The role of a disulfide bridge in the stability and folding kinetics of Arabidopsis thaliana cytochrome c6A

    Get PDF
    Cytochrome c 6A is a eukaryotic member of the Class I cytochrome c family possessing a high structural homology with photosynthetic cytochrome c 6 from cyanobacteria, but structurally and functionally distinct through the presence of a disulfide bond and a heme mid-point redox potential of + 71 mV (vs normal hydrogen electrode). The disulfide bond is part of a loop insertion peptide that forms a cap-like structure on top of the core α-helical fold. We have investigated the contribution of the disulfide bond to thermodynamic stability and (un)folding kinetics in cytochrome c 6A from Arabidopsis thaliana by making comparison with a photosynthetic cytochrome c 6 from Phormidium laminosum and through a mutant in which the Cys residues have been replaced with Ser residues (C67/73S). We find that the disulfide bond makes a significant contribution to overall stability in both the ferric and ferrous heme states. Both cytochromes c 6A and c 6 fold rapidly at neutral pH through an on-pathway intermediate. The unfolding rate for the C67/73S variant is significantly increased indicating that the formation of this region occurs late in the folding pathway. We conclude that the disulfide bridge in cytochrome c 6A acts as a conformational restraint in both the folding intermediate and native state of the protein and that it likely serves a structural rather than a previously proposed catalytic role. © 2011 Elsevier B.V. All rights reserved

    COINSTAC: A Privacy Enabled Model and Prototype for Leveraging and Processing Decentralized Brain Imaging Data

    Get PDF
    The field of neuroimaging has embraced the need for sharing and collaboration. Data sharing mandates from public funding agencies and major journal publishers have spurred the development of data repositories and neuroinformatics consortia. However, efficient and effective data sharing still faces several hurdles. For example, open data sharing is on the rise but is not suitable for sensitive data that are not easily shared, such as genetics. Current approaches can be cumbersome (such as negotiating multiple data sharing agreements). There are also significant data transfer, organization and computational challenges. Centralized repositories only partially address the issues. We propose a dynamic, decentralized platform for large scale analyses called the Collaborative Informatics and Neuroimaging Suite Toolkit for Anonymous Computation (COINSTAC). The COINSTAC solution can include data missing from central repositories, allows pooling of both open and ``closed'' repositories by developing privacy-preserving versions of widely-used algorithms, and incorporates the tools within an easy-to-use platform enabling distributed computation. We present an initial prototype system which we demonstrate on two multi-site data sets, without aggregating the data. In addition, by iterating across sites, the COINSTAC model enables meta-analytic solutions to converge to ``pooled-data'' solutions (i.e. as if the entire data were in hand). More advanced approaches such as feature generation, matrix factorization models, and preprocessing can be incorporated into such a model. In sum, COINSTAC enables access to the many currently unavailable data sets, a user friendly privacy enabled interface for decentralized analysis, and a powerful solution that complements existing data sharing solutions

    Direct breaking of the internal tide near topography : Kaena Ridge, Hawaii

    Get PDF
    Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 380-399, doi:10.1175/2007JPO3728.1.Barotropic to baroclinic conversion and attendant phenomena were recently examined at the Kaena Ridge as an aspect of the Hawaii Ocean Mixing Experiment. Two distinct mixing processes appear to be at work in the waters above the 1100-m-deep ridge crest. At middepths, above 400 m, mixing events resemble their open-ocean counterparts. There is no apparent modulation of mixing rates with the fortnightly cycle, and they are well modeled by standard open-ocean parameterizations. Nearer to the topography, there is quasi-deterministic breaking associated with each baroclinic crest passage. Large-amplitude, small-scale internal waves are triggered by tidal forcing, consistent with lee-wave formation at the ridge break. These waves have vertical wavelengths on the order of 400 m. During spring tides, the waves are nonlinear and exhibit convective instabilities on their leading edge. Dissipation rates exceed those predicted by the open-ocean parameterizations by up to a factor of 100, with the disparity increasing as the seafloor is approached. These observations are based on a set of repeated CTD and microconductivity profiles obtained from the research platform (R/P) Floating Instrument Platform (FLIP), which was trimoored over the southern edge of the ridge crest. Ocean velocity and shear were resolved to a 4-m vertical scale by a suspended Doppler sonar. Dissipation was estimated both by measuring overturn displacements and from microconductivity wavenumber spectra. The methods agreed in water deeper than 200 m, where sensor resolution limitations do not limit the turbulence estimates. At intense mixing sites new phenomena await discovery, and existing parameterizations cannot be expected to apply.This work was funded by the National Science Foundation as a component of the Hawaii Ocean Mixing Program. Added support for FLIP was provided by the Office of Naval Research

    Properly folded bacterially expressed H1N1 hemagglutinin globular head and ectodomain vaccines protect ferrets against H1N1 pandemic influenza virus. PLoS One 5:e11548

    Get PDF
    Abstract Background: In the face of impending influenza pandemic, a rapid vaccine production and mass vaccination is the most effective approach to prevent the large scale mortality and morbidity that was associated with the 1918 &apos;&apos;Spanish Flu&apos;&apos;. The traditional process of influenza vaccine production in eggs is time consuming and may not meet the demands of rapid global vaccination required to curtail influenza pandemic

    Parametric subharmonic instability of the internal tide at 29°N

    Get PDF
    Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 17–28, doi:10.1175/JPO-D-11-0108.1.Observational evidence is presented for transfer of energy from the internal tide to near-inertial motions near 29°N in the Pacific Ocean. The transfer is accomplished via parametric subharmonic instability (PSI), which involves interaction between a primary wave (the internal tide in this case) and two smaller-scale waves of nearly half the frequency. The internal tide at this location is a complex superposition of a low-mode waves propagating north from Hawaii and higher-mode waves generated at local seamounts, making application of PSI theory challenging. Nevertheless, a statistically significant phase locking is documented between the internal tide and upward- and downward-propagating near-inertial waves. The phase between those three waves is consistent with that expected from PSI theory. Calculated energy transfer rates from the tide to near-inertial motions are modest, consistent with local dissipation rate estimates. The conclusion is that while PSI does befall the tide near a critical latitude of 29°N, it does not do so catastrophically.This work was sponsored by NSF OCE 04-25283.2013-07-0
    • …
    corecore