2,037 research outputs found

    An extreme ultraviolet spectrometer experiment for the Shuttle Get Away Special Program

    Get PDF
    An extreme ultraviolet (EUV) spectrometer experiment operated successfully during the STS-7 mission in an experiment to measure the global and diurnal variation of the EUV airglow. The spectrometer is an F 3.5 Wadsworth mount with mechanical collimator, a 75 x 75 mm grating, and a bare microchannel plate detector providing a spectral resolution of 7 X FWHM. Read-out of the signal is through discrete channels or resistive anode techniques. The experiment includes a microcomputer, 20 Mbit tape recorder, and a 28V, 40 Ahr silver-zinc battery. It is the first GAS payload to use an opening door. The spectrometer's 0.1 x 4.2 deg field of view is pointed vertically out of the shuttle bay. During the STS-7 flight data were acquired continuously for a period of 5 hours and 37 minutes, providing spectra of the 570 A to 850 A wavelength region of the airglow. Five diurnal cycles of the 584 A emission of neutral helium and the 834 A emission of ionized atomic oxygen were recorded. The experiment also recorded ion events and pressure pulses associated with thruster firings. The experiment is to fly again on Mission 41-F

    The [4+2]‐Cycloaddition of α‐Nitrosoalkenes with Thiochalcones as a Prototype of Periselective Hetero‐Diels–Alder Reactions—Experimental and Computational Studies

    Get PDF
    The [4+2]‐cycloadditions of α‐nitrosoalkenes with thiochalcones occur with high selectivity at the thioketone moiety of the dienophile providing styryl‐substituted 4H‐1,5,2‐oxathiazines in moderate to good yields. Of the eight conceivable hetero‐Diels–Alder adducts only this isomer was observed, thus a prototype of a highly periselective and regioselective cycloaddition has been identified. Analysis of crude product mixtures revealed that the α‐nitrosoalkene also adds competitively to the thioketone moiety of the thiochalcone dimer affording bis‐heterocyclic [4+2]‐cycloadducts. The experiments are supported by high‐level DFT calculations that were also extended to related hetero‐Diels–Alder reactions of other nitroso compounds and thioketones. These calculations reveal that the title cycloadditions are kinetically controlled processes confirming the role of thioketones as superdienophiles. The computational study was also applied to the experimentally studied thiochalcone dimerization, and showed that the 1,2‐dithiin and 2H‐thiopyran isomers are in equilibrium with the monomer. Again, the DFT calculations indicate kinetic control of this process

    Factorial Moments in a Generalized Lattice Gas Model

    Get PDF
    We construct a simple multicomponent lattice gas model in one dimension in which each site can either be empty or occupied by at most one particle of any one of DD species. Particles interact with a nearest neighbor interaction which depends on the species involved. This model is capable of reproducing the relations between factorial moments observed in high--energy scattering experiments for moderate values of DD. The factorial moments of the negative binomial distribution can be obtained exactly in the limit as DD becomes large, and two suitable prescriptions involving randomly drawn nearest neighbor interactions are given. These results indicate the need for considerable care in any attempt to extract information regarding possible critical phenomena from empirical factorial moments.Comment: 15 pages + 1 figure (appended as postscript file), REVTEX 3.0, NORDITA preprint 93/4

    Correlation measurements in high-multiplicity events

    Full text link
    Requirements for correlation measurements in high--multiplicity events are discussed. Attention is focussed on detection of so--called hot spots, two--particle rapidity correlations, two--particle momentum correlations (for quantum interferometry) and higher--order correlations. The signal--to--noise ratio may become large in the high--multiplicity limit, allowing meaningful single--event measurements, only if the correlations are due to collective behavior.Comment: MN 55455, 20 pages, KSUCNR-011-92 and TPI-MINN-92/47-T (revised). Revised to correct typo in equation (30), and to fill in a few steps in calculations. Now published as Phys. Rev. C 47 (1993) 232

    Multiplicity Distributions and Rapidity Gaps

    Get PDF
    I examine the phenomenology of particle multiplicity distributions, with special emphasis on the low multiplicities that are a background in the study of rapidity gaps. In particular, I analyze the multiplicity distribution in a rapidity interval between two jets, using the HERWIG QCD simulation with some necessary modifications. The distribution is not of the negative binomial form, and displays an anomalous enhancement at zero multiplicity. Some useful mathematical tools for working with multiplicity distributions are presented. It is demonstrated that ignoring particles with pt<0.2 has theoretical advantages, in addition to being convenient experimentally.Comment: 24 pages, LaTeX, MSUHEP/94071

    Soft-core meson-baryon interactions. I. One-hadron-exchange potentials

    Get PDF
    The Nijmegen soft-core model for the pseudoscalar-meson baryon interaction is derived, analogous to the Nijmegen NN and YN models. The interaction Hamiltonians are defined and the resulting amplitudes for one-meson-exchange and one-baryon-exchange in momentum space are given for the general mass case. The partial wave projection is carried through and explicit expressions for the momentum space partial wave meson-baryon potentials are presented.Comment: 25 pages, 2 PostScript figures, revtex4, submitted to Phys. Rev.

    Random and Correlated Phases of Primordial Gravitaional Waves

    Full text link
    The phases of primordial gravity waves is analysed in detail within a quantum mechanical context following the formalism developed by Grishchuk and Sidorov. It is found that for physically relevant wavelengths both the phase of each individual mode and the phase {\it difference} between modes are randomly distributed. The phase {\it sum} between modes with oppositely directed wave-vectors, however, is not random and takes on a definite value with no rms fluctuation. The conventional point of view that primordial gravity waves appear after inflation as a classical, random stochastic background is also addressed.Comment: 14 pages, written in REVTE

    Studies of multiplicity in relativistic heavy-ion collisions

    Full text link
    In this talk I'll review the present status of charged particle multiplicity measurements from heavy-ion collisions. The characteristic features of multiplicity distributions obtained in Au+Au collisions will be discussed in terms of collision centrality and energy and compared to those of p+p collisions. Multiplicity measurements of d+Au collisions at 200 GeV nucleon-nucleon center-of-mass energy will also be discussed. The results will be compared to various theoretical models and simple scaling properties of the data will be identified.Comment: "Focus on Multiplicity" Internationsl Workshop on Particle Multiplicity in Relativistic Heavy Ion Collisions, Bari, Italy, June 17-19, 2003, 16 pages, 15 figure
    • 

    corecore