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We construct minimum-uncertainty solutions of the three-dimensional Schro¨dinger equation with a Coulomb
potential. These wave packets are localized in radial and angular coordinates and are squeezed states in three
dimensions. They move on elliptical Keplerian trajectories and are appropriate for the description of the
corresponding Rydberg wave packets, the production of which is the focus of current experimental effort. We
extend our analysis to incorporate the effects of quantum defects in alkali-metal atoms, which are used in
experiments.

PACS number~s!: 32.80.Bx, 03.65.2w

I. INTRODUCTION

At an early stage in the development of quantum mechan-
ics, Schro¨dinger attempted to find nonspreading wave-packet
solutions for a quantum-mechanical particle evolving along a
classical trajectory. He succeeded for the case of a particle
subject to a harmonic-oscillator potential, obtaining a solu-
tion that follows the classical oscillatory motion without
changing shape@1#. This solution is now called a coherent
state@2#. Schrödinger also attempted to find analogous solu-
tions for the Coulomb potential, without success@3#. Many
authors since have discussed this issue, and it is now known
that there are no exact coherent states for the Coulomb prob-
lem @4–9#.

Although the original Schro¨dinger problem for the Cou-
lomb potential has no solution, one can nonetheless obtain
minimum-uncertainty wave packets exhibiting many features
of the corresponding classical motion. For example, it has
recently been shown that a type of squeezed state called an
elliptical squeezed state~ESS! is a minimum-uncertainty
wave packet for the planar Coulomb problem@10#. An ESS
is localized in both the radial and angular coordinates, and it
travels along a Keplerian ellipse in two dimensions. The ra-
dial part of the initial solution is a radial squeezed state
~RSS!, which minimizes the uncertainty relation for a set of
radial variables that express the Coulomb problem in a form
similar to that of an oscillator@11,12#. The angular part of the
initial solution is a circular squeezed state~CSS!, which
minimizes the uncertainty relation between the angular mo-
mentum L and a suitable angular-coordinate operator
@10,13#.

The primary goal of this paper is to extend the ESS con-
struction to three dimensions and thereby to provide a class
of wave packets coming as close as possible to a solution of
the original Schro¨dinger problem for the Coulomb potential.
We call these wave packetsKeplerian squeezed states~KSS!.
We show that the KSS are minimum-uncertainty wave pack-
ets that are localized in all three dimensions and that travel
along a Keplerian ellipse. Three-dimensional wave packets
of this kind are of particular interest at present because ex-
periments using short-pulsed lasers are attempting to produce
Rydberg wave packets that move along elliptical orbits.

To date, experiments that have detected the classical os-

cillation of a wave packet in a Coulomb potential have been
performed using purely radial wave packets consisting of a
superposition ofn states withl fixed, typically, to ap state
@14–19#. These states follow the initial classical motion but
also exhibit distinctive quantum-mechanical features. For ex-
ample, the uncertainty product oscillates periodically as a
function of time. This is a characteristic of squeezed states
@20#, and indeed the RSS provide a good analytical descrip-
tion of wave packets of this type. The wave packets also
exhibit quantum interference effects, as they undergo a series
of collapses and full and fractional revivals and superrevivals
@21–26#.

To generate a three-dimensional wave packet localized in
radial and both angular coordinates, a superposition ofn, l ,
andm levels must be created. This requires the presence of
additional fields during the excitation process. One proposal
for achieving this involves using a short electric pulse to
convert an angular state into a localized Rydberg wave
packet moving on a circular orbit@27#. An additional weak
electric field could then distort the orbit into an ellipse of
arbitrary eccentricity. We expect the motion of these wave
packets to be well described by the KSS we present here.

The construction of the KSS requires the identification of
angular operators appropriate to a problem with spherical
symmetry. These can then be used to obtain a class of
squeezed states, called spherical squeezed states~SSS!, that
minimize uncertainty products for the angular variables. This
construction and the basic properties of the SSS are pre-
sented in Sec. II.

Section III gives the construction of the KSS. At the ini-
tial time, the KSS may be written as products of RSS with
SSS. The resulting wave packet is localized in all three di-
mensions and consists of a superposition over the three quan-
tum numbersn, l , andm. In this section, we also calculate
expectation values for physical quantities characterizing the
initial wave packet, and we discuss its time evolution.

Section IV outlines how the KSS can be generalized to
include the effects of quantum defects. This is necessary be-
cause experiments performed on Rydberg wave packets gen-
erally use alkali-metal atoms rather than hydrogen.

Section V contains a summary of our results. Some math-
ematical formulas used in deriving expectation values in Sec.
II are given in the Appendix. Throughout this paper, we use
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atomic units with\5m5e51.

II. SPHERICAL SQUEEZED STATES

In this section, we obtain the spherical squeezed states.
These are squeezed states for angular coordinates on a unit
sphere. Section II A discusses the choice of angular variables
used in the construction. Section II B gives the derivation of
the SSS, and Sec. III C examines their properties.

A. Quantum angular variables on the sphere

Classically, the standard angular coordinates on the unit
sphere are the spherical polar coordinatesu andf, which
can be taken as defined in the intervals 0<u<p and
2p<f,p, respectively. At the quantum level, however,
u aref are not well suited as coordinate operators. Some of
the difficulties stem from problems already appearing in the
planar case. For example, iff is taken as periodic, the dis-
continuity atf5p causes complications whenf is acted
upon by derivative operators such as thez componentL3 of
the angular momentumLW . The alternative assumption of a
continuous anglef in the interval2`,f,` also intro-
duces complications because this variable is not periodic and
hence is not observable in the Hilbert space for which
L352 i ]f is Hermitian. In the present instance, the use of
f in conjunction withu on the unit sphere raises further
complexities becausef is not well defined at the poles
u50,p.

Difficulties with angular coordinates on the circle have
been widely discussed in the literature@28#. In addressing the
Schrödinger problem for the planar Coulomb potential@10#
and in a related work on minimum-uncertainty angular pack-
ets @13#, we followed Ref.@29# in circumventing these and
other difficulties by replacingf with two quantum coordi-
nate operators, sinf and cosf, which are both continuous
and periodic. Use of these variables permitted a completely
satisfactory resolution to the essential issues.

In the present work, we follow a similar strategy. We in-
troduce three angular-coordinate operatorsaj , j51,2,3, via
their matrix elements obtained by insertion of the three con-
tinuous and periodic coordinate functions
f j5(sinu cosf, sinu sinf, cosu), respectively, in the
Hilbert-space inner product

^c1uaj uc2&5E
2p

p E
0

p

dVc1* f jc2 , ~1!

wheredV is an element of solid angle on the sphere. They
obey the relation( jaj

251. Classically, they are a natural
choice corresponding to the identification
(x,y,z)→(sinu cosf, sinu sinf, cosu), which uniquely cov-
ers the unit sphere. Moreover, this choice reduces in the limit
u→p/2 to the planar case.

The quantum operatorsaj and the componentsLk of the
angular-momentum operatorLW obey the commutation rela-
tions

@aj ,Lk#5 i e jklal . ~2!

Each of these commutators has an associated uncertainty re-
lation that must be considered in the search for minimum-
uncertainty solutions.

The number of nontrivial relations can be substantially
reduced by stipulating certain initial conditions on the de-
sired wave packet. Without loss of generality, we take the
initial minimum-uncertainty configuration to be a wave
packet localized about the positivex axis. Since we seek a
packet moving along an orbit in thex-y plane, we also as-
sume the initial shape is reflection-symmetric about this
plane. It is also physically reasonable to suppose that the
initial packet is reflection-symmetric about thex-z plane.
These requirements impose the coordinate conditions

^a2&5^a3&50, ^a1&.0 ~3!

and the angular-momentum conditions

^L1&5^L2&50. ~4!

The conditions~3! leave only two nontrivial uncertainty
relations to be considered. They are

Da2DL3>
1

2
u^a1&u ~5!

and

Da3DL2>
1

2
u^a1&u. ~6!

B. Construction of SSS

The CSS are defined as states minimizing the relation~5!
in the x-y plane@10#. Requiring that the SSS reduce to the
CSS in the planar limitu→p/2 means that~5! must be mini-
mized in three dimensions also. Our construction of the SSS
in this section therefore begins with this minimization, after
which we return to the remaining relation~6!.

A wave functionx(u,f) minimizing Eq. ~5! obeys the
differential equation

a2x~u,f!52 i
1

d
~L32^L3&!x~u,f!, ~7!

where the squeezingd in the angular coordinates is a real
constant given by

1

d
[

Da2
DL3

5
2~Da2!

2

u^a1&u
>0. ~8!

As expected, settingu→p/2 reduces Eqs.~7! and ~8! to the
defining equations for the CSS. Fixing^L3&5b, a real pa-
rameter, Eq.~7! becomes

~]f1d sinu sinf2 ib!x~u,f!50. ~9!

The solution to this equation is

x~u,f!5Nexp@d sinu cosf1 ibf1 f ~u!#, ~10!

wheref (u) is an undetermined complex function of sinu and
cosu. Forx(u,f) to be single valued,b must be an integer.
This follows from the general result@13# that minimum-
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uncertainty angular wave packets must have integer expecta-
tion values^L3& of the angular momentum.

We next address the issue of the role of the second uncer-
tainty relation ~6!. An immediate question is whether the
function f (u) may be chosen so thatx(u,f) also minimizes
~6!. This would require that, in addition to~9!, x(u,f) must
satisfy the differential equation

cosux~u,f!5 i
1

d8
~2 icosf]u1 icotu sinf]f!x~u,f!,

~11!

where d8 is a second squeezing parameter defined by
1/d85Da3 /DL2 . However, substituting~10! into ~11! pro-
duces an equality only ifd5d8, b50, and f (u) is a con-
stant. Physically, this means the squeezing ratios are equal,
Da2 /DL35Da3 /DL2 , and that the mean angular momen-
tum vanishes,̂L1&5^L2&5^L3&50. However, this is unac-
ceptable because we seek solutions with a nonzero value for
^L3&. Indeed, the two uncertainty relations~5! and~6! can be
satisfied simultaneously only for states symmetric under ro-
tations about thex axis. The rotational symmetry must there-
fore be broken, and the relation~6! cannot be minimized.

One simple way to break the rotational symmetry would
be to keep̂ L3&Þ0 in Eq.~10! but to setf (u)[0. The func-
tion x(u,f) then would take a simplified form that reduces
directly to a CSS asu→p/2. This choice has the added
elegant feature that expectation values would take the same
form as those for the CSS given in Ref.@10#, except with
modified Bessel functionsI n replaced by modified spherical
Bessel functionsi n with different arguments. However, wave
packets of this type are also unacceptable because certain
physical expectation values diverge. For example,^LW 22L3

2&
diverges.

Obtaining an acceptable minimum-uncertainty wave
packet evidently requires settingbÞ0 and deriving a suit-
able nonconstantf (u). Further physical input is needed to
accomplish this. Note that, whatever its form, the function
f (u) must satisfy the limit f (u)→0 as u→p/2, so that
x(u,f) reduces correctly to a CSS. Furthermore, the
reflection symmetry about thex-y plane suggests that
f5 f ~sinu), independent of cosu.
The function f (u) controls the spread transverse to the

orbit of the initial wave packet. This spread should depend
on the value ofb5^L3&, since physically aŝL3& increases
the wave packet is expected to become more confined to a
region around thex-y plane. For simplicity, we take the
spread as independent of the spread around the orbit, which
is controlled by the parameterd. It turns out that this as-
sumption suffices for our purposes. If it is relaxed, the result-
ing wave packets have a significantly more complicated ana-
lytical structure. In what follows, we therefore permitf (u) to
depend onb, but we require it to be independent ofd.

A wave packet following a Keplerian orbit with maximal
confinement to thex-y plane should have minimal expecta-
tion valueu^LW 22L3

2&u. We can use this physical condition to
obtain f (u), as follows. Sincef (u) is independent ofd, the
limit d→0 can be imposed in Eq.~10! without loss of gen-
erality. In this limit, the uncertaintyDL3 vanishes because

x(u,f) becomes an eigenstate ofL3 with eigenvalue
m5b. Expandingx(u,f) in terms of spherical harmonics
Ylm(u,f) with m5b gives

x~u,f! U
d→0

5(
l>b

clYlb~u,f!. ~12!

Then, calculating the expectation valueu^LW 22L3
2&u in the

statex(u,f)ud→0 shows that it is minimized when the coef-
ficientscl in Eq. ~12! are proportional tod lb . The sum re-
duces to a single term proportional toYbb and hence propor-
tional to sinbuexp(ibf). This implies that exp@ f (u)#
5sinbu. As expected,f (u) is a function of sinu and satisfies
the conditionf (p/2)50. Moreover, this particular functional
form leads to an SSS without singularities at the poles and
hence with finite physical expectation values.

Combining this result with Eq.~10! produces a set of
minimum-uncertainty states satisfying the requirements for
SSS. We therefore take the SSS to be given by

x~u,f!5Nsinbu exp~d sinu cosf1 ibf!. ~13!

C. Features of SSS

We next calculate the normalization constant and some
expectation values for the SSS. These are most conveniently
specified in terms of a functionAj

b(d), defined as

Aj
b~d!52pE

0

p

du~sinu!2b1 j11I j~2d sinu!, ~14!

where j is an integer andI j (z) is a modified Bessel function
of the first kind. The Appendix presents analytical expres-
sions for the functionsAj

b(d) and discusses some useful
properties.

The normalization constantN is given by

N5
1

AA0
b~d!

. ~15!

The nonvanishing expectation values of the angular-
coordinate operators are

^a1&5
A1

b~d!

A0
b~d!

, ~16!

^a1
2&5

1

2A0
b~d!

@A0
b11~d!1A2

b~d!#, ~17!

^a2
2&5

1

2d

A1
b~d!

A0
b~d!

5
1

2d
^sinu cosf&, ~18!

^a3
2&5

1

A0
b~d!

@A0
b~d!2A0

b11~d!#, ~19!

while some useful expectations involving the angular mo-
mentum are

^L3
2&5

d

2

A1
b~d!

A0
b~d!

1b25
d

2
^sinu cosf&1b2, ~20!
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^LW 2&5b~b11!2d2@12^~sinu cosf!2&#

1
2d

A0
b~d!

@~b11!A1
b~d!2bA1

b21~d!#. ~21!

Using the identity~A2! for theAj
b(d) in the Appendix, one

can show that( jaj
251 as required. Note that, in the limit

d→0, ^L3
2&5b2 and ^LW 2&5b(b11), as is appropriate for

an eigenstate withl5m5b.
We next turn to a discussion of some properties of the

SSS. First, expandingx(u,f) in spherical harmonics for the
case withdÞ0 shows that it is a superposition of bothl and
m states. The condition exp@ f (u)#5sinbu ensures that the
squared modulusuclmu2 of the weighting coefficientsclm in
the expansion is maximal forl5m5b and falls rapidly
away from these values. The rapid decrease indicates that

^LW 22L3
2& remains small fordÞ0, as expected. The reader

interested in the form of the expansion can find it in Eq.~31!
of Sec. III.

We have seen that the parameterb is the expectation of
the z component of the angular momentum. It turns out that
the parameterd has an interpretation similar to that of its
counterpart for the CSS. The uncertaintyDL3 depends on
d. This may be confirmed in the neighborhood ofx51,
y5z50 on the unit sphere by expanding the wave packet
aroundf50 at u5p/2. We find ux(p/2,f)u2}exp@2d(12
1
2f

21•••)], which to leading order is a Gaussian inf with
standard deviations51/A2d. Therefore, for larger values of
d the initial wave packet becomes narrower inf.

Classically, a particle moving along a trajectory confined
to the x-y plane has angular motion depending only onf.
The trajectory is initialized by giving values of sinf, the
sign of cosf, andL3 . At the quantum level, the initial an-
gular position of an SSS is specified by the expectation val-
ues in Eq.~3!. As we have seen, the parameterb gives the
initial angular momentum̂L3& and controls the transverse
angular spread, whiled controls the angular spread along the
orbit. Compared to the corresponding classical problem, a
general quantum packet would need two additional param-
eters determining the spread on the surface of the sphere.
However, our simplifying assumption forf (u) means that
only one extra parameter is needed to specify the quantum
solution for the SSS. A related point is that the SSS and CSS
depend on the same number of parameters. This is physically
reasonable since both states follow the same Keplerian orbit
in the two-dimensionalx-y plane.

III. KEPLERIAN SQUEEZED STATES

This section discusses the Keplerian squeezed states.
Their definition is presented in Sec. III A, where their param-
eters are determined in terms of specified physical quantities.
The time evolution of a KSS is examined in Sec. III B, and
an example of a KSS wave packet moving along an elliptical
orbit is provided.

A. Construction and specification of KSS

The SSS solution~13! is a function only of the angular
coordinates and has neither time dependence nor dependence

on the quantum numbern. A solution consisting of a product
of an SSS with a radial energy eigenstate of givenn might be
considered, but this produces a stationary state. However, we
can create a three-dimensional state moving on a Keplerian
orbit by combining an SSS with an RSS.

The RSS are constructed and analyzed in Refs.@11,12#.
They are wave packets localized in the radial coordinates
that initially undergo oscillatory motion between the inner
and outer apsidal points of the corresponding Keplerian el-
lipse. The periodTcl of the motion is that of a classical par-
ticle moving in a Coulomb potential. The construction in-
volves converting the classical effective radial Hamiltonian
for the Coulomb potential in terms of conventional radial
variables to an oscillator description in terms of new vari-
ables. The resulting classical problem is quantized, and wave
functions are obtained that minimize the ensuing quantum
uncertainty relation. The RSS are given by

c~r !5N8r aexp@2g0r2 ig1r #,

N85@~2g0!
2a13/G~2a13!#1/2. ~22!

For the initial wave packet, the parametersa, g0 , andg1
determine the radial position, the uncertainty in the radial
variables, and the radial momentum. In Refs.@11,12#, the
RSS are shown to describe a Rydberg wave packet that has
been excited by a single short laser pulse. The angular part of
the full three-dimensional wave function in this case is fixed
to a p state for excitation from the ground state.

A minimum-uncertainty wave packet moving on a Keple-
rian orbit can be obtained by combining an RSS with an
SSS. The resulting wave packet is a KSS. The separability of
the full Hamiltonian and the independence ofl of the RSS
uncertainty in the new radial coordinate together make it
possible to minimize simultaneously the uncertainty relations
for the new radial variables and those for the angular vari-
ables in~5!. We therefore can take as an initial wave function
the product ofc(r ) in ~22! andx(u,f) in ~13!. The result is
a normalized five-parameter family of KSS,

C~r ,u,f!5c~r !x~u,f!

5NN8r asinbu exp@d sinu cosf

2~g01 ig1!r1 ibf#, ~23!

whereN is given by Eq.~15! andN8 is given by Eq.~22!.
The KSS are minimum-uncertainty wave packets localized in
all three dimensions. The choice of the initial angular-
coordinate location is implicit in the SSS construction and is
specified in Eq.~3!.

Expectation values of operators for the KSS can be cal-
culated analytically. Since the radial and angular wave func-
tions separate, the angular operators have the expectation
values given in Eqs.~16!–~21!. The expectation values for
the radial operators are

^r &5
2a13

2g0
, K 1r L 5

g0

a11
, ~24!
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^r 2&5
~a12!~2a13!

2g0
2 , K 1r 2 L 5

2g0
2

~a11!~2a11!
,

~25!

^pr&52g1 , ^pr
2&5

g0
2

2a11
1g1

2 . ~26!

The uncertainty for the radial coordinates is

DrDpr5
1

2 S 2a13

2a11D
1/2

. ~27!

The RSS are not minimum-uncertainty states in the variables
r andpr , which is as expected since the construction mini-
mizes the uncertainty in the new radial variables instead. For
large values ofa, however,DrDpr→ 1

2.
The expectation value for the energy^H& is obtained us-

ing the full Coulomb Hamiltonian and depends on all five of
the KSS parameters. It is

^H&5
1

2
^pr

2&1
1

2 K 1r 2 L ^LW 2&2 K 1r L . ~28!

We next address the issue of initializing a KSS. With the
wave packet located at the outer apsidal point of an elliptical
orbit, the uncertainty product for a radial Rydberg wave
packet is a minimum. Initially imposing the constraints~3!
ensures that the ellipse has its semimajor axis aligned along
thex axis. The five KSS parametersa, b, g0 , g1 , andd can
then be fixed by specifying the expectations of the radial
coordinateŝ r & and^pr&, the expectation of the angular mo-
mentum^L3&, the expectation of the energy^H&, and the
spreadDL3 in the angular momentum.

The natural choice for the initial expectation value ofpr is
zero. Similarly, the natural choice for the initial expectation
value of r is the outer apsidal point of the orbit,
r out5n2$11A12 l ( l11)/n2%. The expectation̂ L3& gives
the initial angular momentum of the wave packet and its
spread transverse to the orbit. The two remaining conditions
fix the initial spread of the wave packet in the radial and
orbital directions. For the first, a natural choice is to set
^H& equal to the mean energy of a Rydberg wave packet
consisting of a superposition ofn states centered on the
valuen̄. A packet of this type is produced by excitation with
a short laser pulse tuned to the mean energyEn̄521/2n̄2.
For the second, it suffices to specify the widthDL3 of the
superposition. Note, however, that a single laser pulse cannot

excite a wave packet localized in the angular coordinates.
Creation of a superposition of angular eigenstates requires
additional fields to mix angular-momentum eigenstates.

The full set of conditions sufficient to fix the five KSS
parameters are then

^r &5r out, ^pr&50, ^L3&5b,

^H&5En̄ , A^L3
2&2^L3&

25DL3 . ~29!

These determine the values ofa, b, g0 , g1 , andd in terms
of physical parameters in the excitation process.

B. Evolution of KSS

We next investigate the time evolution of a KSS wave
function matched to a Rydberg wave packet at the outer
apsidal point of an elliptical orbit, as described above. By
construction, the packet is expected to travel along a classi-
cal ellipse in thex-y plane.

Since ^pr&50 and ^L3&5b, the initial motion of the
wave packet forb.0 is in the direction of increasingf.
The geometry of the ensuing orbit depends on the values of
n̄, b, andDL3 . The parameterb gives the central values of
l andm. Forb.n̄21, the KSS orbit becomes circular, with
the wave packet propagating at fixed mean radial distance
from the origin. Asb decreases, the orbit becomes elliptical,
with the inner apsidal point moving closer to the nucleus.
Also, for b→1 the radial wave function becomes oscillatory
as the electron passes close to the nucleus.

To study the time evolution of a KSS, we expand
C(r ,u,f) in ~23! in terms of energy and angular-momentum
eigenstates,

C~r ,u,f,t !5 (
n,l ,m

cnlmRnl~r !Ylm~u,f!e2 iEnt. ~30!

The expansion coefficients

cnlm5^C~r ,u,f,0!uRnl~r !Ylm~u,f!&

can be calculated using Eq.~23! as the initial wave function
C(r ,u,f,0). The radial and angular parts separate, and we
may write cnlm5cnl

(RSS)clm
(SSS), wherecnl

(RSS)5^c(r )uRnl(r )&
for c(r ) in ~22! and clm

(SSS)5^x(u,f)uYlm(u,f)& for
x(u,f) in ~13!. The coefficientscnl

(RSS) for the radial part of
the expansion are given in Eq.~58! of Ref. @12#. The coeffi-
cients for the angular expansion can be calculated using~13!.
The result form>0 is

clm
~SSS!5N4Apd0,~ l2m! mod 2

~21!mS 2l11

4p

~ l2m!!

~ l1m!! D
1/2

(
k50

1/2~ l2m!

(
p50

min~m,b!
~21!k

2kk!

3
~2l22k21!!!

~ l2m22k!!
~21!pSmin~m,b!

p D 2~ l2m12p22k!/2

3
G„~ l2m12p22k11!/2…

d~ l2m12p22k!/2 i ~2b1 l23m12p22k!/2~d!. ~31!
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Here, N is the SSS normalization constant in~15!, min
(m,b) gives the minimum of the two valuesm andb, and
i n(z) is a modified spherical Bessel function. The appearance
of the Kronecker deltad0,(l2m) mod 2

implies that ifl2m is an

odd integer thenclm
(SSS)50. Therefore, the SSS is composed

only of eigenstates for whichl2m is even. This follows
because the associated Legendre functions with oddl2m are
odd functions ofu in the interval 0<u<p centered on
p/2, while x(u,f) is an even function ofu in this interval.

As an explicit example of the evolution of a KSS, con-
sider matchingC(r ,u,f,0) to a Rydberg wave packet at the
outer apsidal point withn̄545, ^L3&530, andDL352.5.
Using these values and Eqs.~29!, we obtain the KSS-
parameter valuesa.62.846, b530, g0.0.01834,g150,
and d.12.826. This gives^r &5r out.3508.6 a.u. and

^LW 2&.938.1. Defining a mean valuel̄ of l from the relation

^LW 2&5 l̄ ( l̄11), we find l̄.30.1'b.
The series in~30! may be well approximated by truncat-

ing the sum to a finite number of terms withn centered on
n̄ and l andm centered onb. In the present example, we
allow a spread of ten units inn and l and four units inm.
This gives 484 coefficients, half of which vanish. We keep
the remaining 242 terms in the series and plot two-
dimensional sections through the KSS as a function oft.

Figure 1 presents a slice through the initial KSS in thex-z
plane. This slice is transverse to the classical orbit, which lies
in the x-y plane. The figure shows that the initial wave
packet is localized around a point on thex axis atr'r out and
in a narrow range ofu near u5p/2, corresponding to
z'0.

Figure 2~a! presents a slice through the initial wave
packet in the plane of the classical orbit. The initial wave
packet is located on the positivex axis at the outer apsidal
point. Figures 1 and 2~a! taken together show that the initial
KSS is localized in all three dimensions.

The classical Keplerian orbit for a particle in a Coulomb
potential isTcl52pn̄3. With n̄545, we obtainTcl.13.4
psec. Figure 2~b! shows the KSS in thex-y plane at
t5T cl/3. It has moved in the direction of positivef and is
spreading along the elliptical orbit. In accordance with Ke-
pler’s laws, the wave packet moves more slowly near the
outer apsidal point than near the inner one. As a result, it has

traveled less than 1/3 of the orbital circumference at
t5Tcl/3.

Figure 2~c! shows the KSS in thex-y plane att5Tcl/2. It
has spread along the elliptical orbit and is moving more rap-
idly. The radial distance to the inner apsidal point is
r in.536 a.u. This is sufficiently far from the nucleus for the
wave packet to remain localized inr , and hence no radial
oscillations are apparent.

Figures 2~d! and 2~e! show the slice through the KSS in
thex-y plane at the timest52Tcl/3 andt5Tcl , respectively.
The motion slows again as the wave packet approaches the
outer apsidal point and becomes more localized. Att5Tcl ,
the wave packet resembles the initial wave packet. However,
the motion is not exactly periodic. As time increases, the
wave packet collapses and fort@Tcl a cycle of revivals and
superrevivals commences.

Figure 3 shows the wave packet in thex-y plane at
t5Tcl/2, but viewed from a point on the positivex axis
looking toward the nucleus. The elliptical shape of the orbit
is evident.

IV. INCORPORATION OF QUANTUM DEFECTS

Experiments studying the behavior of Rydberg wave
packets are usually performed using alkali-metal atoms.
These have energies given by the Rydberg series
En*521/2n* 2, where n*5n2d(n,l ), and d(n,l ) is a
quantum defect. The empirical parametersd(n,l ) give the
energy-level shifts away from hydrogenic values. For large
n, they approach asymptotic valuesd( l ) independent ofn.

In Ref. @12#, it is shown that the RSS construction can be
generalized to include the effects of quantum defects. The
analysis uses a model called supersymmetry-based quantum-
defect theory~SQDT! to describe alkali-metal atoms@30#.
This analytical theory for alkali-metal atoms has exact
asymptotic quantum-defect energies as eigenvalues. The
SQDT eigenfunctions form a complete and orthogonal set.

The SQDT eigenstates areRn* l* (r )Ylm(u,f), where
n*5n2d( l ), l *5 l2d( l )1I ( l ), andI ( l ) is an integer that
depends onl . The radial eigenstatesRn* l* (r ) have the same
functional form as the hydrogenic functionsRnl(r ), but n is
replaced byn* and l is replaced byl * . The angular wave
functions are the usual eigenstatesYlm(u,f) of the angular
momentum.

Our KSS construction in three dimensions can be gener-
alized to include the effects of quantum defects@31#. Since
the angular part of the solution in SQDT separates, the SSS
wave functions remain unchanged and are given by
x(u,f) in Eq. ~13!. The RSS wave functionsc(r ) are ob-
tained by writing the classical SQDT Hamiltonian in terms
of new radial oscillator variables incorporating effects of
quantum defects and then finding minimum-uncertainty so-
lutions for the corresponding quantum problem. The result-
ing wave functionc(r ) has a related functional form to that
in Eq. ~22! and is discussed in Ref.@12#.

A KSS C(r ,u,f) for alkali-metal atoms is again formed
as a product of an RSSc(r ) and an SSSx(u,f). The func-
tional form of the solution is similar to that in Eq.~23! but
with suitable replacements for the quantum numbers. To al-
low for the shifted energy eigenvalues of the alkali-metal
atoms, the initialization procedure for the parameters must be

FIG. 1. A slice through the initial KSS wave packet in thex-z
plane, which is transverse to the plane of the classical orbit. The
quantity r 2uC(r ,u,f)u2 ~in arbitrary units! is plotted as a function
of x andz at t50.
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modified. We choosê pr&50 and ^L3&5b, and specify
DL3 as before. Denote byEn̄* the energy expectation of the
wave packet in the excited alkali-metal atom, and letr out* be
the outer apsidal point for a superposition of states with
quantum-defect eigenenergies. Then, we impose^H&5En̄*
and ^r &5r out* , which differ from the hydrogenic case. To
calculate^H& explicitly, we can take advantage of the com-
pleteness of the SQDT eigenfunctions and expand the initial
KSS as a superposition of SQDT eigenstates,

C~r ,u,f,0!5 (
n,l ,m

c̃nlmRn* l* ~r !Ylm~u,f!, ~32!

where the expansion coefficients, which depend on the KSS
parameters, can be determined by inversion. The expectation
value for the Hamiltonian is then specified by

^H&5 (
n,l ,m

uc̃nlmu2En*5En̄* . ~33!

It is known that the long-term revival times for an alkali-
metal wave packet depend on the quantum defects and that
the effects of the quantum defects are different from the ef-
fects of a laser detuning@25#. In additional, the appearance of
deviations from the hydrogenic potential arising from the
presence of core electrons in an alkali-metal atom means that

FIG. 2. Slices through the KSS wave packet in thex-y plane, at different times during the classical orbital cycle. The quantity
r 2uC(r ,u,f,t)u2 ~in arbitrary units! is shown as a function ofx andy at the times~a! t50, ~b! t5 1

3Tcl , ~c! t5 1
2Tcl , ~d! t5 2

3Tcl , and~e!
t5Tcl .
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the Runge-Lenz operatorAW does not commute with the
Hamiltonian. The classical orbit therefore precesses at a rate
determined by the quantum defect@12#.

V. SUMMARY

In this paper, we have obtained minimum-uncertainty
wave-packet solutions for the Schro¨dinger equation with a
Coulomb potential in three dimensions. The solutions are the
KSS and are given as a product of RSS and SSS. The RSS,
previously derived, minimize the uncertainty relation for ra-
dial variables expressing the radial Coulomb problem in os-
cillator form. The SSS, constructed here, minimize the un-
certainty relation for angular-coordinate and angular-
momentum operators. The KSS provide analytical solutions
to the Coulomb problem that move along classical Keplerian
orbits. They exhibit both classical and quantum-mechanical
features.

The KSS can be used as an analytical tool for studying the
quantum-classical correspondence in the Coulomb problem.
They may also be used to describe Rydberg wave packets
created by excitation of a Rydberg atom with a short laser
pulse in the presence of external fields. Such wave packets
are expected to move in three dimensions along elliptical
orbits that are strongly peaked around a plane. To match a
KSS to a Rydberg wave packet, we choose the outer apsidal
point as the initial location of the wave packet. The five KSS

parameters are determined from the expectation values of the
radial position, the radial momentum, the energy, the angular
momentumL3 transverse to the orbital plane, and the spread
in L3 .

We obtained the time evolution of a KSS and provided an
explicit example. The wave packet moves along an elliptical
orbit with the classical Keplerian orbital period. The width of
the wave packet oscillates during the motion, as is character-
istic of a squeezed state. The KSS maintain their shape for
several orbital cycles before collapsing and undergoing
quantum recurrences.

Finally, we provided an extension of the construction to
the case where quantum defects are present. With this analy-
sis, the KSS can be used for the description of wave packets
in alkali-metal atoms, which are the ones of choice in current
experiments.
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APPENDIX

In this appendix, we discuss the functionsAj
b(d) defined

in Eq. ~14! and examine some of their properties.
The integral in Eq.~14! can be evaluated. We find

Aj
b~d!54Ap(

k50

b
~21!k

dk S b

k DGS k1
1

2D i j1k~2d!,

~A1!

where i n(z) is a modified spherical Bessel function. This
exact expression permits the numerical computation of
Aj

b(d) to arbitrary precision using standard procedures.
A useful identity for theAj

b(d) can be derived by taking
advantage of some properties of the modified spherical
Bessel functions. We obtain

Aj
b11~d!5Aj12

b ~d!1
j11

d
Aj11

b ~d!. ~A2!

For j.0, we findAj
b(0)50. For j50, however, the value of

the function with zero argument is

A0
b~0!5

4p~2b!!!

~2b11!!!
. ~A3!

These relations are used to simplify some expressions in the
main body of the text.
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