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Keplerian squeezed states and Rydberg wave packets
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We construct minimum-uncertainty solutions of the three-dimensional 8ictyer equation with a Coulomb
potential. These wave packets are localized in radial and angular coordinates and are squeezed states in three
dimensions. They move on elliptical Keplerian trajectories and are appropriate for the description of the
corresponding Rydberg wave packets, the production of which is the focus of current experimental effort. We
extend our analysis to incorporate the effects of quantum defects in alkali-metal atoms, which are used in
experiments.

PACS numbe(s): 32.80.Bx, 03.65-w

[. INTRODUCTION cillation of a wave packet in a Coulomb potential have been
performed using purely radial wave packets consisting of a
At an early stage in the development of quantum mechansuperposition oh states withl fixed, typically, to ap state
ics, Schralinger attempted to find nonspreading wave-packef14—19. These states follow the initial classical motion but
solutions for a quantum-mechanical particle evolving along also exhibit distinctive quantum-mechanical features. For ex-
classical trajectory. He succeeded for the case of a particlample, the uncertainty product oscillates periodically as a
subject to a harmonic-oscillator potential, obtaining a solufunction of time. This is a characteristic of squeezed states
tion that follows the classical oscillatory motion without [20], and indeed the RSS provide a good analytical descrip-
changing shapgl]. This solution is now called a coherent tion of wave packets of this type. The wave packets also
state[2]. Schralinger also attempted to find analogous solu-exhibit quantum interference effects, as they undergo a series
tions for the Coulomb potential, without succd83. Many  of collapses and full and fractional revivals and superrevivals
authors since have discussed this issue, and it is now knowji21—-26.
that there are no exact coherent states for the Coulomb prob- To generate a three-dimensional wave packet localized in
lem[4-9]. radial and both angular coordinates, a superposition, ¢f
Although the original Schidinger problem for the Cou- andm levels must be created. This requires the presence of
lomb potential has no solution, one can nonetheless obtaiadditional fields during the excitation process. One proposal
minimum-uncertainty wave packets exhibiting many featuregor achieving this involves using a short electric pulse to
of the corresponding classical motion. For example, it hagonvert an angular state into a localized Rydberg wave
recently been shown that a type of squeezed state called @acket moving on a circular orbj27]. An additional weak
elliptical squeezed statéESS is a minimum-uncertainty electric field could then distort the orbit into an ellipse of
wave packet for the planar Coulomb probl¢h®]. An ESS  arbitrary eccentricity. We expect the motion of these wave
is localized in both the radial and angular coordinates, and ipackets to be well described by the KSS we present here.
travels along a Keplerian ellipse in two dimensions. The ra- The construction of the KSS requires the identification of
dial part of the initial solution is a radial squeezed stateangular operators appropriate to a problem with spherical
(RSS9, which minimizes the uncertainty relation for a set of symmetry. These can then be used to obtain a class of
radial variables that express the Coulomb problem in a fornsqueezed states, called spherical squeezed $&%3 that
similar to that of an oscillatdrl1,12. The angular part of the minimize uncertainty products for the angular variables. This
initial solution is a circular squeezed stat€S9, which  construction and the basic properties of the SSS are pre-
minimizes the uncertainty relation between the angular mosented in Sec. Il.
mentum L and a suitable angular-coordinate operator Section Il gives the construction of the KSS. At the ini-
[10,13. tial time, the KSS may be written as products of RSS with
The primary goal of this paper is to extend the ESS conSSS. The resulting wave packet is localized in all three di-
struction to three dimensions and thereby to provide a classensions and consists of a superposition over the three quan-
of wave packets coming as close as possible to a solution aéim number:, |, andm. In this section, we also calculate
the original Schrdinger problem for the Coulomb potential. expectation values for physical quantities characterizing the
We call these wave packdteplerian squeezed statésSS). initial wave packet, and we discuss its time evolution.
We show that the KSS are minimum-uncertainty wave pack- Section IV outlines how the KSS can be generalized to
ets that are localized in all three dimensions and that travahclude the effects of quantum defects. This is necessary be-
along a Keplerian ellipse. Three-dimensional wave packetsause experiments performed on Rydberg wave packets gen-
of this kind are of particular interest at present because exerally use alkali-metal atoms rather than hydrogen.
periments using short-pulsed lasers are attempting to produce Section V contains a summary of our results. Some math-
Rydberg wave packets that move along elliptical orbits. ematical formulas used in deriving expectation values in Sec.
To date, experiments that have detected the classical o#-are given in the Appendix. Throughout this paper, we use
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atomic units withh =m=e=1. Each of these commutators has an associated uncertainty re-
lation that must be considered in the search for minimum-
uncertainty solutions.
Il. SPHERICAL SQUEEZED STATES The number of nontrivial relations can be substantially

In this section, we obtain the spherical squeezed stateé‘?duced by stipulating certain initial conditions on the de-

These are squeezed states for angular coordinates on a uﬁ'i'ied wave packet. Without loss of generality, we take the

sphere. Section Il A discusses the choice of angular variabld§!tidl minimum-uncertainty configuration to be a wave

used in the construction. Section Il B gives the derivation ofPacket localized about the positiveaxis. Since we seek a
the SSS, and Sec. Ill C examines their properties. packet moving along an orbit in they plane, we also as-
sume the initial shape is reflection-symmetric about this

plane. It is also physically reasonable to suppose that the

A. Quantum angular variables on the sphere initial packet is reflection-symmetric about thez plane.
Classically, the standard angular coordinates on the unil "ese requirements impose the coordinate conditions
sphere are the spherical polar coordinafieand ¢, which (a)=(az)=0, (a;)>0 (3)

can be taken as defined in the intervalss @< and
—m<¢<mr, respectively. At the quantum level, however, and the angular-momentum conditions

0 are ¢ are not well suited as coordinate operators. Some of

the difficulties stem from problems already appearing in the (L1)=(L2)=0. 4
planar case. For example, ¢f is taken as periodic, the dis-
continuity at¢=m causes complications whe# is acted
upon by derivative operators such as theomponent ; of

the angular momenturh. The alternative assumption of a 1

continuous anglep in the interval —»< ¢<o also intro- AazALs= 5l(ay)| 5
duces complications because this variable is not periodic and

hence is not observable in the Hilbert space for whichgnd

Ls=—1id, is Hermitian. In the present instance, the use of

The conditions(3) leave only two nontrivial uncertainty
relations to be considered. They are

¢ in conjunction with # on the unit sphere raises further AduAL >1| | ®)
complexities becauseb is not well defined at the poles /L= 5 (ay)l.
6=0,7.
Difficulties with angular coordinates on the circle have -
. . . . . B. Construct f SSS
been widely discussed in the literaty28]. In addressing the ) onstruction © S
Schralinger problem for the planar Coulomb poten{i&0] The CSS are defined as states minimizing the reldon

and in a related work on minimum-uncertainty angular packin the x-y plane[10]. Requiring that the SSS reduce to the
ets[13], we followed Ref.[29] in circumventing these and CSS in the planar limit— /2 means that5) must be mini-
other difficulties by replacing with two quantum coordi- Mized in three dimensions also. Our construction of the SSS
nate operators, sih and cogb, which are both continuous in this section therefore begins with this minimization, after
and periodic. Use of these variables permitted a completelywhich we return to the remaining relati¢f).
satisfactory resolution to the essential issues. A wave functionx(6,¢) minimizing Eq. (5 obeys the

In the present work, we follow a similar strategy. We in- differential equation
troduce three angular-coordinate operat@yrsj=1,2,3, via 1
t_helr matrix elements obFalr!ed by insertion of the three_ con- ax(0,¢)=—i=(Ls—(La)x(6,¢), (7)
tinuous and periodic coordinate functions o
f;=(sind cosp, sindsing, cos), respectively, in the

Hilbert-space inner product where the squeezing in the angular coordinates is a real

constant given by

il = | [ a0t & 1_Ma 200y ®
o7 & Alg  [(a)] ~

wheredQ is an element of solid angle on the sphere. TheyAS expected, setting— /2 reduces Eqg7) and(8) to the

obey the relations;a’=1. Classically, they are a natural defining equations for the CSS. Fixiftis)= 43, a real pa-
rameter, Eq(7) becomes

choice corresponding to the identification
(x,y,2)—(sinf cosp, sindsing, cox), which uniquely cov- 9.4 6 sind sinb—i -0 9
ers the unit sphere. Moreover, this choice reduces in the limit (g ing sing—14)x(6,4)=0. ©
06— /2 to the planar case. The solution to this equation is

The quantum operatows and the components, of the _ _
angular-momentum operatdr obey the commutation rela- x(0,¢)=Nexd é sind cosp+iBe+f(0)],  (10)
tions

wheref(6) is an undetermined complex function of giand
cosd. For x(6,¢) to be single valued3 must be an integer.
[aj,Lil=i€jay . (2)  This follows from the general resu[tl3] that minimum-
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uncertainty angular wave packets must have integer expectg{ 0,¢) becomes an eigenstate df; with eigenvalue
tion values(L3) of the angular momentum. m= B. Expandingy (6, ) in terms of spherical harmonics
We next address the issue of the role of the second unce¥; (6, $) with m= g gives
tainty relation (6). An immediate question is whether the
function f () may be chosen so thg( 6, ¢) also minimizes _
(6). This would require that, in addition @), x(8, #) must x(6,4) 50 ;5 CY16(6, ). (12
satisfy the differential equation
Then, calculating the expectation vall>—L2)| in the
1 statex(#, ¢)|s_.o shows that it is minimized when the coef-
coHx (0, d) =i g(—icos‘qﬁaﬁicote singd ;) x (6, ), ficientsc, in Eq. (12) are proportional taj ;. The sum re-
duces to a single term proportional Yg; and hence propor-
(1D tional to sireexp(B¢). This implies that expf(6)]
=sinf6. As expectedf(6) is a function of siW and satisfies
where &' is a second squeezing parameter defined b he conditionf (7/2)=0. Moreover, this p_e_lrticular functional
1/8' =Aas/AL,. However, substituting10) into (11) pro- orm Iea(_js to an SSS. without smgularltles at the poles and
duces an equality only i5=5', B=0, andf(6) is a con- hence with finite physical expectation values.

stant. Physically, this means the squeezing ratios are equal, COMPining this result with Eq(10) produces a set of
Aa,/AL;=Aa3/AL,, and that the mean angular momen-m'”'m“m uncertainty states satisfying the requirements for

tum vanishes({L)=(L,)=(L3)=0. However, this is unac- SSS. We therefore take the SSS to be given by

ceptable because we seek sqlutions v_vith a nonzero value for ¥(6,)=Nsinf§ exp( 8 sind cosp+iBe). (13)

(L3). Indeed, the two uncertainty relatiof® and(6) can be

satisfied simultaneously only for states symmetric under ro-

tations about th& axis. The rotational symmetry must there- C. Features of S55

fore be broken, and the relatigf) cannot be minimized. We next calculate the normalization constant and some
One simple way to break the rotational symmetry wouldexpectation values for the SSS. These are most conveniently

be to keep(L3)#0 in Eq.(10) but to setf(#)=0. The func-  specified in terms of a functioAJ-ﬁ(é), defined as

tion x(6,¢) then would take a simplified form that reduces

directly to a CSS a®99— /2. This choice has the added

elegant feature that expectation values would take the same

form as those for the CSS given in R¢L0], except with

modified Bessel functionk, replaced by modified spherical wherej is an integer andi;(z) is a modified Bessel function

Bessel functions, with different arguments. However, wave of the first kind. The Appendix presents analytical expres-

packets of this type are also unacceptable because certaions for the functionsAf(ﬁ) and discusses some useful

physical expectation values diverge. For exampfé,— L§> properties.

Af(5)=277f do(sing)?A*1*1,(25 sing),  (19)
0

diverges. The normalization constaM is given by

Obtaining an acceptable minimum-uncertainty wave
packet evidently requires setting+0 and deriving a suit- N= 1 (15)
able nonconstant(#). Further physical input is needed to ,/Ag(g)'

accomplish this. Note that, whatever its form, the function
f(#) must satisfy the limitf(6)—0 as #— /2, so that The nonvanishing expectation values of the angular-
x(0,¢) reduces correctly to a CSS. Furthermore, thecoordinate operators are
reflection symmetry about the-y plane suggests that P
f=1f(sing), independent of cas _AL(9)

The functionf(6) controls the spread transverse to the (a))= Ag(é)’
orbit of the initial wave packet. This spread should depend
on the value of3=(L3), since physically aglL ;) increases
the wave packet is expected to become more confined to a (af)= 2AE(5) [AFH(8)+AS(5)], 17
region around thex-y plane. For simplicity, we take the 0
spread as independent of the spread around the orbit, which 1 A% ) 1
is controlled by the parametet. It turns out that this as- { 2)— N TE —(sind cosp), (18
sumption suffices for our purposes. If it is relaxed, the result- 26 Ag(9) 25
ing wave packets have a significantly more complicated ana- 1
lytical structure. In what follows, we therefore perrmt) to _ B B+1
depend onB, but we require it to be independent &f (@3)= A5( )[A 0(9)=Ae (9], (19

A wave packet following a Keplerian orbit with maximal
confinement to the-y plane should have minimal expecta- While some useful expectations involving the angular mo-
tion value|(L2—L2)|. We can use this physical condition to Mentum are
obtainf(#), as follows. Sincd (6) is independent ob, the SA
limit 5—0 can be imposed in Eq10) without loss of gen- (LY==
erality. In this limit, the uncertaintyAL; vanishes because 2A

(16)

5
)+,82=§(sin6 cosp)y+ B2, (20
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(E2>:,8(,8+ 1)— 82[1—((sind cosp)?)] on the quantum num_ber. Asoluti_on consisting_of a product
of an SSS with a radial energy eigenstate of gimemight be
s p-1 considered, but this produces a stationary state. However, we
+ %[(IBJFl)Al(&_BAl (8] @1 can create a three-dimensional state moving on a Keplerian
orbit by combining an SSS with an RSS.
. . . . . The RSS are constructed and analyzed in Réf§,12.
Using the |dent|ty(2A2) for thEA_iﬂ(a) in the Appe_ndlx, one They are wave packets localized in the radial coordinates
can show thatjaj=1 as required. Note that, in the limit o initially undergo oscillatory motion between the inner
6—0, (L5 =p% and(L?)=B(B+1), as is appropriate for and outer apsidal points of the corresponding Keplerian el-
an eigenstate with=m= g. lipse. The periodly of the motion is that of a classical par-
We next turn to a discussion of some properties of theticle moving in a Coulomb potential. The construction in-
SSS. First, expanding( 6, ¢) in spherical harmonics for the volves converting the classical effective radial Hamiltonian
case with# 0 shows that it is a superposition of bdtland  for the Coulomb potential in terms of conventional radial
m states. The condition ekf( ) ]=sin?# ensures that the variables to an oscillator description in terms of new vari-
squared modulufc,,|? of the weighting coefficients,,, in  ables. The resulting classical problem is quantized, and wave
the expansion is maximal for=m=g and falls rapidly functions are obtained that minimize the ensuing quantum
away from these values. The rapid decrease indicates thahcertainty relation. The RSS are given by

(L?—L3) remains small for5+0, as expected. The reader N Feexd — vl — i
interested in the form of the expansion can find it in B) Y(r)=N"rexd = yor —iyarl,
of Sec. Ill.

We have seen that the paramegeis the expectation of N’ =[(2y0)2* 3T (2a+3)]*2 (22)
the z component of the angular momentum. It turns out that
the parametes has an interpretation similar to that of its o
counterpart for the CSS. The uncertainty.; depends on For the initial wave packet, the parameters yo, andy;
5. This may be confirmed in the neighborhood s 1, determine the radial position, the uncertainty in the radial
around¢=0 at §=7/2. We find|x(7/2,¢)|?<exd281— RSS are shown to describe a Rydberg wave packet that has
142+ ...)], which to leading order is a Gaussiandnwith been excited by a single short laser pulse. The angular part of

standard deviatiom= 1/y/25. Therefore, for larger values of the full three-dimensional wave function in this case is fixed

5 the initial wave packet becomes narrowerdn to ap state for excitation from the ground state.

: : ; : : A minimum-uncertainty wave packet moving on a Keple-
Classically, a particle moving along a trajectory confined . ) . o )
to the x-y plane has angular motion depending only én rian orbit can be obtained by combining an RSS with an

: R o SSS. The resulting wave packet is a KSS. The separability of
The trajectory is initialized by giving values of gy the S )
sign of cos, andLs. At the quantum level, the initial an- the full Hamiltonian and the independencelodf the RSS

gular position of an SSS is specified by the expectation vaineertainty in .the new radial coordinate toget.her make I
ues in Eq.(3). As we have seen, the paramefegives the possible to minimize simultaneously the uncertainty relations

initial angular momentur{L,) and controls the transverse for the new radial variables and those for the angular vari-

angular spread, whilé controls the angular spread along the ables in(5). We therefore can take as an initial wave function

orbit. Compared to the corresponding classical problem, éhe product of(r) in (22) andx (6, ¢) in (13). The result is

general quantum packet would need two additional param@ normalized five-parameter family of KSS,

eters determining the spread on the surface of the sphere.

However, our simplifying assumption fdi(6) means that ¥ (r,8,¢)=y(r)x(8,¢)

only one extra parameter is needed to specify the quantum ) )

solution for the SSS. A related point is that the SSS and CSS =NN’r“sin’9 exd 6 sing cosp

depend on the same number of parameters. This is physically _ : .

rea?sonable since both states foIFI)ow the same Kepleprian orbit (Yotiy)r+ipel, (23

in the two-dimensionak-y plane.

whereN is given by Eq.(15) andN’ is given by Eq.(22).

The KSS are minimum-uncertainty wave packets localized in

all three dimensions. The choice of the initial angular-
This section discusses the Keplerian squeezed statesoordinate location is implicit in the SSS construction and is

Their definition is presented in Sec. lll A, where their param-specified in Eq(3).

eters are determined in terms of specified physical quantities. Expectation values of operators for the KSS can be cal-

The time evolution of a KSS is examined in Sec. Ill B, and culated analytically. Since the radial and angular wave func-

an example of a KSS wave packet moving along an elliptications separate, the angular operators have the expectation

orbit is provided. values given in Eqs(16)—(21). The expectation values for

the radial operators are

Ill. KEPLERIAN SQUEEZED STATES

A. Construction and specification of KSS

The SSS solutior{13) is a function only of the angular (ry= 2a+3 1\ % (24
coordinates and has neither time dependence nor dependence 2vo '

r a+1l’
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5 (a+2)(2a+3) 1 23 excite_ a wave packet Ic_)(_:alized in the angular coordinat_es.
(roy= 5.2 = (a+1)(2a+1)’ Creation of a superposition of angular eigenstates requires

Yo 25) additional fields to mix angular-momentum eigenstates.

The full set of conditions sufficient to fix the five KSS
: parameters are then
2 2
==y, = + 1. (26)
PO=e (P07 st () =raw (P)=0, (L=,
The uncertainty for the radial coordinates is (HY=Er, (L2 —(Ls)?=AL;. (29)
1/2a+3\12 These determine the values ®f 8, vy, y1, andé in terms
ArAp,=§ 20t 1 (27 of physical parameters in the excitation process.

The RSS are not minimum-uncertainty states in the variables B. Evolution of KSS

r andp,, which is as expected since the construction mini- We next investigate the time evolution of a KSS wave
mizes the uncertainty in the new radial variables instead. Fofunction matched to a Rydberg wave packet at the outer
large values ofx, however,ArAp,— 3. apsidal point of an elliptical orbit, as described above. By

The expectation value for the ener{i) is obtained us- construction, the packet is expected to travel along a classi-
ing the full Coulomb Hamiltonian and depends on all five of cal ellipse in thex-y plane.
the KSS parameters. It is Since {p,)=0 and (L3)=g, the initial motion of the

wave packet for3>0 is in the direction of increasing.
1 1/1\ . 1 The geometry of the ensuing orbit depends on the values of
(H)= E(pr2>+ §<r7><|‘2>_<?>' (28) n, B, andAL3. The parameteB gives the central values of
| andm. For B=n—1, the KSS orbit becomes circular, with

We next address the issue of initializing a KSS. With theth® wave packet propagating at fixed mean radial distance
wave packet located at the outer apsidal point of an ellipticaffom the origin. Asg decreases, the orbit becomes elliptical,
orbit, the uncertainty product for a radial Rydberg waveWith the inner apsidal point moving closer to the nucleus.
packet is a minimum. Initially imposing the constrairi@  Also, for 3—1 the radial wave function becomes oscillatory
ensures that the ellipse has its semimajor axis aligned alor@$ the electron passes close to the nucleus.
thex axis. The five KSS parametess 8, v, y1, andé can To study the time evolution of a KSS, we expand
then be fixed by specifying the expectations of the radial¥ (1.6, ¢) in (23) in terms of energy and angular-momentum
coordinategr) and(p;), the expectation of the angular mo- €lgenstates,
mentum({L5), the expectation of the enerdy), and the
spreadAL 5 in the angular momentum. i

The natural choice for the initial expectation valueppfis ‘If(r,0,¢,t)=n|2m CaimRni(N)Yim(6,¢)e""=r. (30)
zero. Similarly, the natural choice for the initial expectation "
value of r is the outer apsidal point of the orbit, The expansion coefficients
rou=N#1+V1—I(I+1)/n?. The expectation(Ls) gives
the initial angular momentum of the wave packet and its Coim={(¥(r,0,6,0|Ry(r)Y,m(6,0))

spread transverse to the orbit. The two remaining conditions ] o ]

fix the initial spread of the wave packet in the radial andCan be calculated using E€3) as the initial wave function
orbital directions. For the first, a natural choice is to set¥(r,6,¢,0). The rsgs'alsasrs‘d angular parts separate, and we
(H) equal to the mean energy of a Rydberg wave packef1@y Write Cnim=Ccly > (5>, wherec{{*¥=(y(r)|Ry(r))
consisting of a superposition of states centered on the for #(r) in (220 and ¢,5%=(x(0,4)|Yim(6,4)) for
valuen. A packet of this type is produced by excitation with x(6, ) in (13). The coefficientsF5% for the radial part of

a short laser pulse tuned to the mean endfgy: — 1/2n°. the expansion are given in E(p8) of Ref.[12]. The coeffi-

For the second, it suffices to specify the widil; of the  cients for the angular expansion can be calculated u4i8g

superposition. Note, however, that a single laser pulse canndthe result form=0 is

Cln o =N 8o 1-m)

(_m

21+1 (I—m)! 1/2 1/2(1—m) min(m,3) (—l)k
47 (1+m)! 2Rk

mod k=0  p=0

(21— 2k—1)!! p(min(mﬁ))z(._mup_zm

“T—m—2Kk1

I'({(l-m+2p—2k+1)/2).
ST—m+2p—2K)72 I(28+1-3m+2p—2k)2(9). (31)




942 ROBERT BLUHM, V. ALAN KOSTELECKY, AND BOGDAN TUDOSE 53

traveled less than 1/3 of the orbital circumference at
t=TC|/3.

Figure Zc) shows the KSS in thg-y plane att=T/2. It
has spread along the elliptical orbit and is moving more rap-
idly. The radial distance to the inner apsidal point is
rin=536 a.u. This is sufficiently far from the nucleus for the
wave packet to remain localized im and hence no radial
oscillations are apparent.

Figures 2d) and 2e) show the slice through the KSS in
thex-y plane at the times=2T./3 andt=T, respectively.
The motion slows again as the wave packet approaches the
outer apsidal point and becomes more localizedt AT,
the wave packet resembles the initial wave packet. However,
the motion is not exactly periodic. As time increases, the

FIG. 1. A slice through the initial KSS wave packetin &  \ave packet collapses and for T, a cycle of revivals and
plane, which is transverse to the plane of the classical orbit. Th%uperrevivals commences.

quantityr?|¥(r,6,4)|? (in arbitrary unit$ is plotted as a function Figure 3 shows the wave packet in they plane at
of x andz at1=0. t=T,/2, but viewed from a point on the positive axis

looking toward the nucleus. The elliptical shape of the orbit
is evident.

Here, N is the SSS normalization constant {@5), min
(m,B) gives the minimum of the two values and 8, and
i,(2) is a modified spherical Bessel function. The appearance

of the Kronecker delt@ -y, modzimplies that ifl —m is an IV. INCORPORATION OF QUANTUM DEFECTS

odd integer thert{S5=0. Therefore, the SSS is composed
only of elgenstate§ for which—m is even. T.h's follows packets are usually performed using alkali-metal atoms.
because the associated Legendre functions with edd are These have energies given by the Rydberg series
odd functions of@ in the interval G= < centered on E.«=—1/2n*2, where n*=n—4(n,1), and &(n,l) is a

/2, while x(6,¢) is an even function ofl in this interval. ¢ 301m defect. The empirical parameté(®,1) give the
. AS an ex_pI|C|t example of the evolution of a KSS, con- energy-level shifts away from hydrogenic values. For large
sider matc.hlngtI'(.r,agﬁl,Ol to a Rydberg wave packet at the n, they approach asymptotic valuéél) independent of.
out.er apsidal point witm=45, (L) =30, an_dAL3:2.5. In Ref.[12], it is shown that the RSS construction can be
Using these values and Eq&9), we obtain the KSS-  goneralized to include the effects of quantum defects. The
parameter values=62.846, 5=30, yo=0.01834,,=0,  jn5ysis uses a model called supersymmetry-based quantum-
and 6=12.826. This gives(r)=ro,~3508.6 a.u. and (efect theory(SQDT) to describe alkali-metal aton80].
(L?)=938.1. Defining a mean valueof | from the relation  This analytical theory for alkali-metal atoms has exact
<E2>=I(I+1), we findl=30.1= . asymptotic quantum-defect energies as eigenvalues. The
The series i30) may be well approximated by truncat- SQDT eigenfunctions form a complete and orthogonal set.
ing the sum to a finite number of terms withcentered on The SQDT eigenstates arB.««(r)Y,n(6,¢), where
n and| andm centered onB3. In the present example, we n*=n—45(1), I*=1-5(1)+1(1), andI(l) is an integer that
allow a spread of ten units in and| and four units inm. depends oh. The radial eigenstatds, « «(r) have the same
This gives 484 coefficients, half of which vanish. We keepfunctional form as the hydrogenic functioR,(r), butn is
the remaining 242 terms in the series and plot two-replaced byn* andl is replaced by *. The angular wave
dimensional sections through the KSS as a functioh of functions are the usual eigensta¥s, (6, ¢) of the angular
Figure 1 presents a slice through the initial KSS intie momentum.
plane. This slice is transverse to the classical orbit, which lies Our KSS construction in three dimensions can be gener-
in the x-y plane. The figure shows that the initial wave alized to include the effects of quantum defel@4]. Since
packet is localized around a point on thexis atr ~r,,;and  the angular part of the solution in SQDT separates, the SSS
in a narrow range off near 6=/2, corresponding to wave functions remain unchanged and are given by
z~0. x(6,¢) in Eq. (13). The RSS wave functiong(r) are ob-
Figure 2a) presents a slice through the initial wave tained by writing the classical SQDT Hamiltonian in terms
packet in the plane of the classical orbit. The initial waveof new radial oscillator variables incorporating effects of
packet is located on the positiveaxis at the outer apsidal quantum defects and then finding minimum-uncertainty so-
point. Figures 1 and(2) taken together show that the initial lutions for the corresponding quantum problem. The result-

Experiments studying the behavior of Rydberg wave

KSS is localized in all three dimensions. ing wave functiong(r) has a related functional form to that
The classical Keplerian orbit for a particle in a Coulombin Eq. (22) and is discussed in Ref12].
potential is Ty=2mn>. With n=45, we obtainTy=13.4 A KSS¥(r,0,¢) for alkali-metal atoms is again formed

psec. Figure @) shows the KSS in thex-y plane at as a product of an RS&(r) and an SS$(6,¢). The func-
t=T /3. It has moved in the direction of positivk and is  tional form of the solution is similar to that in Eq3) but
spreading along the elliptical orbit. In accordance with Ke-with suitable replacements for the quantum numbers. To al-
pler’s laws, the wave packet moves more slowly near thdow for the shifted energy eigenvalues of the alkali-metal
outer apsidal point than near the inner one. As a result, it hagtoms, the initialization procedure for the parameters must be
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FIG. 2. Slices through the KSS wave packet in thg plane, at different times during the classical orbital cycle. The quantity
r2|W(r,6,,t)|? (in arbitrary unit is shown as a function of andy at the times(a) t=0, (b) t=1T, (c) t=3T4, (d) t=3T, and(e)
t:Td .

modified. We choos€p,)=0 and (L3)=p, and specify where the expansion coefficients, which depend on the KSS

AL 5 as before. Denote bl+ the energy expectation of the parameters, can be determined by inversion. The expectation

wave packet in the excited alkali-metal atom, andrfgtbe  value for the Hamiltonian is then specified by

the outer apsidal point for a superposition of states with

quantum-defect eigenenergies. Then, we impdse=Eq«

and (r)=r%,, which differ from the hydrogenic case. To

calculate(H) explicitly, we can take advantage of the com-

pleteness of the SQDT eigenfunctions and expand the initial It is known that the long-term revival times for an alkali-

KSS as a superposition of SQDT eigenstates, metal wave packet depend on the quantum defects and that
the effects of the quantum defects are different from the ef-
fects of a laser detuninf@5]. In additional, the appearance of

_ = deviations from the hydrogenic potential arising from the
v(r,0,¢4,00= CrimRn* 1+ ()Y m(0,0), 32 - .
(r.6.4.0) n;m nimRns1+ (1) Yim( 6, ) 32 presence of core electrons in an alkali-metal atom means that

<H>:n.2m |€iml 2Eqx = Es (33)
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parameters are determined from the expectation values of the
radial position, the radial momentum, the energy, the angular
momentummL 5 transverse to the orbital plane, and the spread

inLs.

We obtained the time evolution of a KSS and provided an
228 explicit example. The wave packet moves along an elliptical
Lt orbit with the classical Keplerian orbital period. The width of
the wave packet oscillates during the motion, as is character-
istic of a squeezed state. The KSS maintain their shape for
several orbital cycles before collapsing and undergoing
guantum recurrences.
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e Finally, we provided an extension of the construction to
the case where quantum defects are present. With this analy-
PR e R e sis, the KSS can be used for the description of wave packets
BEzeEsimsenrsfsssnasiEfn 228 in alkali-metal atoms, which are the ones of choice in current
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R APPENDIX
the Runge-Lenz operatoA does not commute with the ) ) ) ] )
Hamiltonian. The classical orbit therefore precesses at a rate !N this appendix, we discuss the functiodf(s) defined

determined by the quantum defdae). in Eg. (14) and examine some of their properties.
The integral in Eq(14) can be evaluated. We find

1

In this paper, we have obtained minimum-uncertainty A]-B(é)—4\/;k20 &k k3 )1i+(20),
wave-packet solutions for the Schlinger equation with a (AL)
Coulomb potential in three dimensions. The solutions are the
KSS and are given as a product of RSS and SSS. The RS®hereiy(z) is a modified spherical Bessel function. This
previously derived, minimize the uncertainty relation for ra-exact expression permits the numerical computation of
dial variables expressing the radial Coulomb problem in osAjﬁ(ﬁ) to arbitrary precision using standard procedures.
cillator form. The SSS, constructed here, minimize the un- A useful identity for theAJ-B(E) can be derived by taking
certainty relation for angular-coordinate and angular-advantage of some properties of the modified spherical
momentum operators. The KSS provide analytical solutionBessel functions. We obtain
to the Coulomb problem that move along classical Keplerian o

: - . ) . n
](()erg{tjsr.e;hey exhibit both classical and quantum-mechanical Ajﬁ+l(5):AjB+2(5)+ JTAjﬁﬂ( 5). (A2)

The KSS can be used as an analytical tool for studying the
guantum-classical correspondence in the Coulomb problentorj>0, we findAf(O)zo. Forj=0, however, the value of
They may also be used to describe Rydberg wave packetihe function with zero argument is
created by excitation of a Rydberg atom with a short laser
pulse in the presence of external fields. Such wave packets AB(0) = 4m(2p)!! A3
are expected to move in three dimensions along elliptical 0(0)= 2B+ (A3)
orbits that are strongly peaked around a plane. To match a
KSS to a Rydberg wave packet, we choose the outer apsiddhese relations are used to simplify some expressions in the
point as the initial location of the wave packet. The five KSSmain body of the text.
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