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We present a theoretical construction for closest-to-classical wave packets localized in both angular
and radial coordinates and moving on a keplerian orbit. The method produces a family of elliptical
squeezed states for the planar Coulomb problem that minimize appropriate uncertainty relations in radi-
al and angular coordinates. The time evolution of these states is studied for orbits with different semima-
jor axes and eccentricities. The elliptical squeezed states may be useful for a description of the motion of
Rydberg wave packets excited by short-pulsed lasers in the presence of external fields, which experi-
ments are attempting to produce. We outline an extension of the method to include certain effects of
quantum defects appearing in the alkali-metal atoms used in experiments.

PACS number(s): 32.80.Bx, 03.65.—w

I. INTRODUCTION

Coherent states [1] are candidate quantum-mechanical
states for probing the interface between classical and
quantum mechanics. Obtaining appropriate coherent
states for a given quantum situation can be a difficult
task, even for apparently simple systems. For example,
although Schrodinger succeeded in finding exact non-
spreading coherent states for the harmonic oscillator [2],
he was unable to find an analogous solution for the
Coulomb potential [3]. This problem has been discussed
by many authors, and indeed it is now known for the
Coulomb case that there are no exact solutions represent-
ing localized nonspreading packets following the classical
motion [4-10].

Given the impossibility of solving the original
Schrodinger problem, one can seek instead closest-to-
classical wave packets for the Coulomb potential without
imposing the condition that the expectation values follow
the exact classical motion for all time. It is natural to
consider first a simplified version of this problem in
which attention is restricted to the radial part of the
motion, with a fixed (say, p-state) angular wave function.
Physically, a wave function of this type results when a
short laser pulse incident on a Rydberg atom excites a
coherent superposition of energy states with identical
angular-momentum quantum numbers.

It turns out that a kind of squeezed state [11] called a
radial squeezed state (RSS) provides a good description of
a closest-to-classical radial packet of this type [12,13].
Such states minimize the uncertainty relation in a set of
variables for which the radial Coulomb problem takes a
form similar to that of an oscillator. An oscillator
squeezed state is like a coherent state in that it follows
the classical motion for all time. However, it does not
maintain its shape, instead having a position-space spread
that oscillates periodically [14]. It can be shown that the
corresponding Coulomb RSS has radial motion following
the closest-to-classical motion along a keplerian ellipse.
As is characteristic of a squeezed state, the RSS exhibits

1050-2947/95/52(3)/2234(11)/%$06.00 52

oscillations in the uncertainty product and ratio as a
function of time.

Radial wave packets with p-state angular distributions
have been experimentally produced using short-pulse
lasers to excite a coherent superposition of Rydberg
states [15-20]. The resulting localized Rydberg wave
packets have features that match some of those of a clas-
sical particle moving in a Coulomb potential. For exam-
ple, the initial motion is periodic with the classical
keplerian period. While radial Rydberg wave packets ini-
tially follow the classical motion, they also exhibit effects
due to quantum-mechanical interference. For instance,
at times beyond a few classical periods they collapse and
undergo a cycle of fractional and full revivals [21-24].
Indeed, at still larger times, well beyond the appearance
of the first full revival, the quantum-interference effects
cause radial wave packets to undergo a new cycle of frac-
tional and full superrevivals [25,26]. Eventually, at times
large compared with the superrevival time scale, the
wave packets spontaneously decay or lose their coherence
through other decay processes.

The RSS description reproduces the primary features
in the motion of a Rydberg wave packet produced by a
short-pulsed laser, including the revival and superrevival
structures. Moreover, the RSS approach has a number of
attractive features. A simple example is the shape of an
RSS wave packet, which, unlike a simple Gaussian, is
asymmetrical along the radial direction. This asymmetry
is desirable in a theoretical description of a packet pro-
duced with a transform-limited laser pulse exciting a su-
perposition of unequally spaced Coulomb energy levels.

It is natural to ask whether this analytical description
of the radial Coulomb problem can be extended to in-
corporate the angular dependence characteristic of a clas-
sical particle moving in a keplerian ellipse. The issue is
of particular interest at present because experiments are
currently attempting to produce Rydberg wave packets
that move along elliptical trajectories.

The purpose of the present paper is to address this
question. We provide here a planar extension of the RSS
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construction to a description of minimum-uncertainty
wave packets moving along a keplerian ellipse, and we
discuss some of the key features of the solution. Like the
RSS, the packets derived here are squeezed states. We
call them elliptical squeezed states (ESS).

Unlike purely radial packets, which have p-state angu-
lar distributions, experimental production of wave pack-
ets localized in angular coordinates necessarily involves
generating a superposition of / states. Superpositions of
different [ states in a manifold of fixed »n have been pro-
duced [27]. Although a packet of this kind is indeed lo-
calized in angular variables, the degeneracy of the / states
in hydrogen means that it is stationary and hence fails to
follow the classical motion.

The production of a wave packet localized in both ra-
dial and angular variables requires creating a superposi-
tion of both »n and / states. To date, the only experiments
that have detected periodic motion of a Rydberg wave
packet with the classical keplerian period are those per-
formed with radial packets, which have fixed I. However,
a technique for producing a superposition of both # and /
states has been suggested [28]. The proposal involves
making use of a short electric field to convert an angular
state into a localized Rydberg wave packet. Once pro-
duced, such a wave packet would move on a circular or-
bit. If an additional weak electric field is present, a wave
packet moving on an ellipse of arbitrary eccentricity
could be produced. Its motion would have features simi-
lar to those of the ESS we present here.

We begin our derivation of the ESS with a discussion
of the planar RSS appropriate for the keplerian motion in
Sec. II. The next task, performed in Sec. IIT A, is to ob-
tain appropriate quantum-mechanical operators describ-
ing the angular position and angular momentum of a par-
ticle in a central potential. In the remainder of Sec. III,
we proceed to the construction of a wave packet, called a
circular squeezed state (CSS), that minimizes the uncer-
tainty product for the angular variables, and we discuss
some of its properties.

Section IV provides the construction of the ESS by
minimizing the appropriate uncertainty relations. At the
initial time, the ESS may be written as the products of
RSS with CSS. Since the ESS naturally involve a super-
position over both / and » quantum numbers, localization
in both the angular and radial coordinates is achieved. In
this section, we also obtain expectation values for
relevant physical quantities and discuss the time evolu-
tion. The ESS move with classical keplerian periodicity
along an elliptical orbit of fixed mean eccentricity and
semimajor axis.

Since experiments are often performed in alkali-metal
atoms rather than with hydrogen, it can be important to
allow for modifications due to quantum defects. Some of
these are treated in Sec. V. Finally, Sec. VI summarizes
our results.

II. PLANAR RADIAL SQUEEZED STATES

In this section, we outline the construction of the radi-
al squeezed states for motion in a plane. Although the re-
sults differ in detail, much of the analysis is similar to
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Ref. [13], to which the reader is referred for a more com-
plete treatment.

The RSS construction begins with the classical effective
radial Hamiltonian for the Coulomb potential written in
terms of the radial variables r and p, and converts it to an
oscillator description in terms of new variables R and P.
The resulting classical problem is then quantized, and
wave functions are obtained minimizing the quantum un-
certainty relation obeyed by R and P. These wave func-
tions are the RSS. One motivation for this construction
is that the minimum uncertainty of the RSS with respect
to oscillator coordinates incorporates some of the attrac-
tive features of oscillator squeezed states, while maintain-
ing the RSS time evolution controlled by the Schrodinger
equation with a Coulomb potential.

Classically, the effective radial planar Hamiltonian for
a particle in a Coulomb potential is

2
_1_g, (1)

H=3pi+ 5=

where p, is the radial momentum and E is the energy.
For E <0, the radial motion is oscillatory between
the values r; , given by r, ,=a(1xe), where a =1/2|E]|
is the semimajor axis of the orbital ellipse and
e =(1—2I%|E|)'? is the eccentricity, with / the constant
classical angular momentum. The classical orbital period
is given by T ,,=m/(2|E|)*"%.

The conversion to an oscillator description is via the
variable change [6]

—';‘ 7{, P =p, - (2)
In terms of R and P, the equation H = E becomes
1P?+1PPR*=1e?, 3)

which has the form of an energy equation for an oscilla-
tor.

Promoting R and P to the status of quantum-
mechanical operators R=1/r—1/1? and
P=p,=—i(3,+1/2r), where [r,p,]=i, we obtain the
commutation relation [R,P]=—i/r?. The RSS are the
wave functions ¥(r) minimizing the corresponding uncer-
tainty relation

ARAPZ L < —1—> @
2\ 2
at fixed time.
The minimum-uncertainty wave packets are given by

Y(r)=Nr%xp[ —vor —ivir], 5)

where the normalization constant is N;=(2y,)*t!/
[T(2a+2)]'/2. The parameters a, ¥, and ¥, are given in
terms of the squeezing

AR _ 2(AR)*
S=——"=—"— (6)
AP (1/r?)
and expectations of the operators 1/r and p, by

1 1/1
a=§:—%, 70=E<7>’ 7’1=—<pr>' 7)
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The wave functions ¢(r) form a three-parameter family
of planar RSS. The radial part of the classical motion is
uniquely determined by two parameters specifying a
point in the r-p, phase space. However, three parameters
are needed to fix the quantum-mechanical solution ¥(r)
because, in addition to specifying {r) and {p,), it is
necessary to provide information about the spread of the
packet. This can be done, for instance, by fixing the
mean energy (H ).

The RSS discussed in Refs. [12,13] can be used to de-
scribe a radial Rydberg wave packet with p-state angular
distribution produced by a single short laser pulse. The
corresponding three RSS parameters for this situation are
determined by matching the RSS expectation values for
(H), (r), and (p,) to mean values for the Rydberg
wave packet at the outer apsidal point. Three experimen-
tal quantities control this match. The frequency of the
laser pulse determines the mean energy of the wave pack-
et. The time delay after the excitation of the wave packet
determines the location of the packet. Finally, the dura-
tion of the laser pulse fixes the spread of the wave packet.

Our purpose in the present work is to obtain wave
packets (the ESS) that follow the classical keplerian
motion along an ellipse. This implies incorporating non-
trivial angular dependence into the analysis, so quantities
such as the mean energy depend on both radial and angu-
lar coordinates. Again, certain expectation values specify
the ESS parameters. However, the coordinate depen-
dence is sufficiently intertwined that it is impossible to
treat independently the determination of the three planar
RSS parameters a, ¥, and ¥, of Eq. (5). For this reason,
we defer until Sec. IV a discussion of this topic.

III. CIRCULAR SQUEEZED STATES

The goal of this section is to obtain the circular
squeezed states, which can be viewed as squeezed states
for angular coordinates in the plane. Section IIT A con-
tains some remarks about the choice of angular coordi-
nates. Section III B derives the CSS, while Sec. III C ex-
amines properties of the CSS.

A. Quantum angular variables

The effective angular Hamiltonian for planar motion is
the square L? of the angular momentum operator L.
There are, however, subtleties involved in the choice of
the corresponding angular coordinates to use in the quan-
tum description. This subsection briefly discusses some
of the issues directly relevant to the construction of the
CSS and provides the definitions and conventions we
have adopted. For more details and a guide to the early
literature on this topic, we refer the reader to the review
[29].

Among the possible choices for the angular coordinate
are the continuous variable ¢, with — o <¢, < o and
the periodic variable ¢, with —7=<¢, <m. Both these
choices present problems at the quantum level. The con-
tinuous variable ¢, is not periodic, and hence is not an
observable in the Hilbert subspace of functions for which
L =—id, is Hermitian under a conventional inner prod-
uct. In contrast, ¢, is periodic but is discontinuous at
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¢,=m, which causes unusual effects with derivative
operators such as the angular momentum. For instance,
direct substitution into the commutation relation [¢,,L]
generates 8-function contributions.

These difficulties can be avoided by choosing instead
angular coordinates that are both periodic and continu-
ous. However, a single such quantity is insufficient to
specify uniquely a point on a circle, since periodicity im-
plies the existence of extrema and hence no single quanti-
ty can be one-to-one. One possibility [30] is to use two
angular coordinates, cos¢ and sing, where ¢ is either ¢,
or ¢,. Classically, this is a natural choice since it corre-
sponds to the identification (x,y)—(cos¢,sing) on a unit
circle.

The corresponding quantum operators can be defined
through their matrix elements in the Hilbert space. We
take as the inner product the definition

(nlv)=[" doyty, . ®

Matrix elements of the quantum operators cos¢ and sing
are then given by insertion of the coordinate functions
cos¢ and sing in the inner product (8).

The angular operators obey the nonlinear relation

sing®+Cosp?=1I where I is the identity operator. Note
that using one of the two angular coordinates along with
the sign of the other suffices to determine a unique loca-
tion on a circle. However, this choice is not smooth.

Taken together, the pair of operators cosd,sing have all
the features needed for a quantum-mechanical treatment.
The quantum angular-coordinate operators Cos¢$ and

@ and the angular momentum L are intertwined by the
commutation relations

P
,L =—isi ’
G 1= o
[sing,L]=icos¢ , 9
[Eosd,Smp1=0

The uncertainty relations following from these equations
are

Ac/o}gbAngl(s{r?b)l,

(10)
o A\
AsingAL = L|(cos¢ )| , (1
and
N AN
AsingA cos¢ =0 . (12)

The last of these relations shows that cos¢ and sing can
be specified simultaneously to arbitrary precision, which
is intuitively reasonable since both quantities are needed
to determine the location of the quantum particle.

For simplicity, in the remainder of this paper we adopt

the usual convention of writing cos¢ as cos¢ and sing as
sing, leaving the context to determine whether an opera-
tor or a function is intended.

B. Construction of CSS

We begin by seeking a minimum-uncertainty state that
is centered about ¢=0. Circular symmetry then implies
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the conditions
(sing)=0, (cos¢)>0. (13)

This means that the uncertainty relation (11) provides the
only nontrivial constraint. A wave packet x(¢) minimiz-
ing this relation must obey the differential equation

(sin¢)x=—i%(L —(Ly, (14)

where the squeezing 6 in the angular coordinates is a real
constant given by

lz Asing - Z(AsinQ)2 >0

5 AL _ [{cosg)| -0 15
The solution to Eq. (14) is
X(#)=N,exp(6cosp+iBg) , (16)

where we have defined the real parameter 8=(L ). Note
that B must be integer for the y(4) to be single valued.
This is a special case of the general result that minimum-
uncertainty angular packets must have integer angular-
momentum expectations [31]. The normalization con-
stant NV, is given by

1

172

N,= , (17)

where I,(z) is a modified Bessel function of the first kind.
The two-parameter family of states (16) are the CSS.
They have previously entered the literature in the context
of uncertainty relations for phase and angle variables
[29]. In addition to (L )=p and (sin8) =0, already im-
posed above, we find

1,(28)

{cosd) =735, 0>

(18)

as expected.

By construction, the CSS (16) have magnitude peaking
at ¢ =0. It is shown in Sec. IV that this is appropriate for
use in deriving packets moving along an ellipse aligned
with an outer apsidal point at ¢ =0, which is the orienta-
tion most likely to be relevant in future experiments.
However, modified CSS with magnitude peaking at some
angle ¢ =¢ instead would be relevant for packets moving
along an ellipse of arbitrary orientation. The remainder
of this subsection concerns these modified CSS.

We first remark that imposing (cos¢) <O instead of
Eq. (13) results in a sign change of the inverse squeezing §
and hence in a packet of the same shape as Eq. (16) but
centered about ¢=m. Another possibility is to seek a
configuration with {cos¢ ) =0 instead of (13), whereupon
the interesting constraint becomes Eq. (11) instead of
(10). The solution is again of the form (16) but with sin¢g
replaced by cos¢ in the exponential, representing a pack-
et centered at ¢ ==+ /2 according to the sign of (sing ).

One approach to the construction of a packet centered
at an arbitrary angle ¢, is to take advantage of rotational
covariance. Implicit in the case of cos¢ and sin¢g as angu-
lar variables is a choice of origin for ¢, or equivalently, a
choice of orientation for the coordinate axes in the plane.
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However, the effective angular Hamiltonian L2 has U(1)-
rotational invariance corresponding to independence of
the choice of origin. A rotation by an angle ¢, may be
implemented by a translation in the continuous coordi-
nate, . —¢. —d,. This leaves invariant all physical ob-
servables since the inner product (8) is invariant on func-
tions of the periodic coordinates sing and cosé.

The conditions (13) and the solution (16) break this
U(1) symmetry. A U(1) rotation of (16) by ¢—d—d,
produces a different packet with maximum centered at

éo:
X(¢,00)=N,exp[8 cos(¢—o) +iB(¢—¢o)] .

Instead of Eq. (10), this packet minimizes an uncertainty
relation between a new angular-coordinate operator
cos(¢—¢,) and the angular-momentum operator L.

An interesting issue is whether there is a meaningful
way to minimize both (10) and (11). Simultaneous ex-
tremization of both relations is impossible. Furthermore,
various combinations could be chosen for minimization,
producing a variety of interpolations between the solu-
tions found at ¢=0,:t%77, 7. However, there is a unique
prescription for treating both relations together such that
the packet produced is the rotated version (19) of (16).
For any given packet, define the quantities

p?=[Acos(¢—¢o) AL —L|(sin(¢—g,)) |?,
v2=[Asin(¢—¢o) AL —1|{cos(¢—¢) ) |? .

(19)

(20

Requiring that the quadratic combination Q =u?++? be
the constant Q, given by the case ¢,=0 yields the solu-
tion (19). The value of Q, is

1,(28) )2
I,(28)

1,(28) )2

1,(28)

1,(28)
I1,(28)

82

07 4

1

82

(21)

C. Features of CSS

The form (16) of the CSS can be used to obtain
second-order expectations. We find

I7(28)
2,y 1
(cos?¢) T,25) ’ (22)
25y= 1 1128 _ 1
(sin%p) 26 1,(25) 28(coszi)), (23)
and
2 =§ 11(28) 2=§ 2
(L?) 2_10<25>+ 2(cos¢)+B. (24)

Note that {sin?$ ) + (cos’p) =1, as required. In the lim-
it 80, (sin’¢) and (cos’¢$) both approach 1, while as
8— o0, (sin$) —0 and {cos?¢) —1.

The uncertainties in the angular coordinates and
momentum are

Io(28)I1(28)—[1,(28)]?
[1,(28)]?

(A cos$)?= , (25)
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(Asing) 26 1y26) 26 (cose) , (26)
. 8 11(28) _ 8
(AL) 2 1(28) 2(cosqS) . 27

These confirm that the uncertainty product (11) is mini-
mized.

The uncertainty relations reveal that the CSS parame-
ter 8 represents the angular-momentum spread of the
solution y(#). As 8 decreases so does AL, and hence the
angular-coordinate width increases. In the limit
8—0, the normalization constant N,—1/V2m, so
X(¢) tends to an angular-momentum eigenstate Yjz(¢)
=(27) " 2exp(iB$). This state has AL —0, consistent
with the limit §—0 of Eq. (27). Moreover, (sing)—0
also, so both sides of the uncertainty relation (10) vanish
in this limit. This avoids the appearance of infinite un-
certainty in A cos@, which is impossible for a bounded
function. Similarly, as 8 —0 both sides of Eq. (11) vanish.

The interpretation of 8§ as the angular-momentum
spread is confirmed by an expansion of the packet (16) in
the vicinity of ¢=0: [x(¢)|><exp[28(1—1ig*+ ---)].
This shows that to leading order |x(#)|? has a Gaussian
dependence proportional to exp(—8&¢%), with angular-
coordinate standard deviation o =1/v/28. It also implies
that a CSS of finite angular-coordinate width satisfies
|{cos$ )| <1 along with the conditions (13), which differs
from the corresponding classical particle located on the
unit circle at cos¢ =1, sin¢ =0.

Given the initial angular location, a CSS is specified by
two quantities 8 and 8. Compared to the corresponding
classical problem, an extra parameter is needed to fix the
quantum solution. Classically, the motion on a circle is
determined by the initial values of sin¢, the sign of cos¢,
and L. At the quantum level, the initial angular position
is specified by (sing) and the sign of {cos¢), while
B=(L) establishes the angular momentum. The extra
parameter & controls the angular spread of the packet
and can be fixed through Eq. (24) by giving AL. Evident-
ly, in an experiment attempting to produce a wave packet
localized in the angle ¢, it is insufficient to excite a state

2.5 T T
3o

2r AL =25 —

1.5 4
Ix(#)1*

1r p
0.5 [ -

0 1 I

- —mr/2 /2 ™

0
¢ (radians)

FIG. 1. Sample CSS |x(#)|> (arbitrary units) plotted as a
function of ¢ in radians. All three cases shown are centered on
¢=0 with B={L )=30. The angular-coordinate widths of the
CSS depend on & and have the values AL=0.5 for §=~0.804
(solid line), AL=1.5 for §=~4.757 (dotted line), and AL=2.5 for
8==12.753 (thick solid line).
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of definite /. A single laser pulse alone therefore cannot
excite an angular wave packet. A superposition of /
states with a spread AL must be produced by turning on
additional fields that excite more than one value of /.

Plots of some normalized CSS as a function of ¢ are
presented in Fig. 1. The configurations all have
(sing)=0, {cos¢)>0, and B=(L)=30. Three
different examples are shown, with AL=0.5, 1.5, and 2.5
corresponding to §=~0.804, 4.757, and 12.753, respective-
ly. As expected, increasing 8 decreases the angular-
coordinate spread.

IV. ELLIPTICAL SQUEEZED STATES

This section discusses the elliptical squeezed states.
Section IV A constructs them and explains how a given
ESS is specified in terms of physical quantities. The issue
of time evolution is examined in Sec. IV B, where we
show that the ESS move along an orbit close to a classical
ellipse. In Sec. IV C, features of the ESS solutions and
their relationship to other approaches are considered.

A. Construction and specification of ESS

The CSS solution (16) is a function only of the angular
coordinates and has neither time dependence nor depen-
dence on the energy quantum number n. One solution of
the full planar Coulomb problem is the product of a CSS
with a radial energy eigenstate of given n. However, this
produces a stationary state.

The desired closest-to-classical packet moving on a
keplerian orbit can be obtained by taking advantage of
the separability of the full Hamiltonian. Note that the
uncertainty relation (40) is independent of / because the
uncertainty AR involves the combination R —{(R ). This
implies it is possible to minimize simultaneously the un-
certainty relations (4) and (10) at a given time. We can
therefore take as an initial state the product of an RSS
¥(r) and a CSS x(¢), giving

Y(r,¢)=9(r)x(d)

(2,}/0)2a+2 172
= | 271,28)F2a+2) | |
Xexp[ —(yo+iy)r +8cosdp+iBs] , (28)

where we have substituted from Egs. (5) and (16). This is
a normalized five-parameter family of ESS. They
represent minimum-uncertainty packets localized in both
radial and angular coordinates and evolving in time. As
discussed in Sec. III, the choice of the initial angular-
coordinate location is implicit in the CSS construction
and is taken to be (sing ) =0 and {cos¢ ) > 0.

Expectation values of operators in the ESS can be cal-
culated analytically using Eq. (28). Some physically use-
ful expectations are as follows:

(r>=a+1 <r2>=(a+l)(2a+3)

2 ’ (29)
Yo 2v%

75

—+v? 30
2a Yi, (30

(p,)=—v1, (PP)=
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N _1,(28)

(sing) =0, {cos¢)= 1,(25) >0, (31
_ 2y 8 1,(28) 5

(LY=p, (L= +6 (32)
_Yolvo—4 v ve (8 1(28) .,

)= SGetn T2 TatatD) |2 1,200 T8 |

(33)

The expectation value for the energy ( H ) is obtained us-
ing the planar Coulomb Hamiltonian and depends on all
five of the parameters associated with the component
RSS and CSS.

The associated uncertainty products are given by

ArAp,=%\/a+1/a , (34)
Asinoar = L 112 (35)
S T Y T,(28)
1 Io(28)1,(28)11(28)—[I,(28)]}
A cosOAL =— 3 . (36)
2 [1,(28)]

The ESS is not a minimum-uncertainty state in r and p,,
which is as expected since it is constructed to minimize
the uncertainty relation (4) instead For large values of «,
however, ArAp, — 1.

We consider an initial configuration where the wave
packet is located at the outer apsidal point of an elliptical
orbit. This choice is consistent with the experimental sit-
uation, where the uncertainty product for radial Rydberg
packets reaches a minimum near the outer apsidal point
[21]. The constraints imposed on {sin¢) and {cos¢) en-
sure that the ellipse has semimajor axis aligned along the
x axis of the coordinate system. The parameters a, 3, v,
71, and 8 can be fixed in terms of the spread AL in the
angular momentum and expectations of the radial coordi-
nates () and (p, ), of the angular momentum (L ), and
of the energy (H ).

Classically, (r), {p,), and (L) determine the mean
location and initial velocity of the packet. At the quan-
tum level, two additional physical conditions must be
given to determine completely the ESS. These conditions
represent the initial width of the packet in the radial and
angular coordinates. For the first, we set the energy ex-
pectation equal to the mean energy of a Rydberg packet
consisting of a superposition of n states centered on the
value . A packet of this type can be produced by excita-
tion with a short laser pulse tuned to the mean energy
E.=—1/2(n—1/2)*. If the excitation occurs in the
presence of external fields, a superposition of / states can
be achieved as well. The second extra condition is the
spread AL in this superposition. The precise field ar-
rangement will determine AL, although in practice it may
be difficult to determine a priori for a given experiment.

Denote by I the average value of / for the superposition
of I states. Then, we choose to set the expectation of the
coordinate r equal to a radial distance to the outer apsi-
dal point written in terms of these average quantum num-
bers,
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Fow=(T—1) |1+ 1 37
h=z

2 172
.
(7 )2}

The expectation of the radial momentum is set to zero.
These choices are not uniquely enforced by experimental
considerations but do ensure that both RSS and CSS are
readily recovered in suitable limits of the ESS.

The full set of conditions sufficient to fix the five ESS
parameters is therefore as follows:

(r)=row {p,)=0, (L)=T,
(H)=E,, V(L?>)—(L)*=AL .

(38)

These determine a, B, v, ¥, and 8 in terms of the three
quantities 7, I, and AL whose values depend on a particu-
lar excitation scheme using a short-pulsed laser in the
presence of external fields.

B. Evolution of ESS

With parameters matching a Rydberg wave packet at
the outer apsidal point on an elliptical orbit, the ESS (28)
may be taken as a minimum-uncertainty initial solution
of the time-dependent Schrodinger equation. Since
{p,) =0 and (L ) =B by construction, for 8> 0 the wave
packet will begin to move in the direction of increasing ¢.
The geometry of the ensuing orbit depends on the values
of 7, I, and AL. In the limit 7—n —1, the orbits for the
ESS should become more circular in shape, and the wave
packet should propagate at a fixed mean radial distance
from the nucleus. As /—1, the orbit should become
highly elliptical, and the inner apsidal point should ap-
proach the origin. In this case, radial oscillations should
occur as the particle passes close to the nucleus, as is ob-
served for /=1 RSS [12].

The time evolution of the ESS may be studied by ex-
panding W(r,¢,t) in eigenstates R,;(r) of the energy
E,=—1/2(n —1/2)* and Y,(#) of the angular momen-
tum, given by

2r

— 1
n—s3

)

R,,I(r)=Nr|I|e “r/(n—l/Z)szm_l [

(39)

Y, (¢)= ‘/lz_ﬁexp( —ilg),

where N is a normalization constant, n is a positive in-
teger, and [/ is a positive or negative integer satisfying
|I| £(n —1). The expansion of the ESS is

W(r,d,t)=3 cuRu(NY(d)e " (40)
n,l

Note that the time dependence of the phase means that
the ESS is separable only at t=0.

The coefficients c,;={¥(r,$,0)|R,;(r)Y;(¢)) may be
calculated using Eq. (28) as the initial wave function
Y(r,$,0). The result for / =20 is
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As an example, consider a wave packet with A=45,
1=30, and AL=2.5. Using these values and Eq. (38), we
obtain the ESS parameter values a=~57.408, B=30,
Y0=0.01697, y,=0, and §=12.753. The series in (40)
may be well approximated by truncating the sum to a
finite number of terms centered on 7 and [. This permits
the ESS to be plotted as a function of r and ¢ at different
times ¢.

Figure 2(a) shows the initial ESS defined at t=0. It is
located on the positive x axis at the outer apsidal point
and is evidently localized in both radial and angular coor-
dinates. The radial distance to the outer apsidal point is
7 out = 3443 in atomic units.

The classical orbital period for motion on a keplerian
ellipse is Ty=2m(m—1/2)’. With =45, we obtain
T, =13.4 psec. Figure 2(b) shows the ESS at the time

-4000

0
X (a.u.) 2000

FIG. 2. The modulus of an ESS r|W(r,$,7)|? (arbitrary units) plotted as a function of 7 and ¢ at the times (a) =0, (b) t = 1T, (c)

t=1Ty, @ t=2T,, (e t=T,.
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t=1T,. It has moved in the direction of positive ¢ and
is spreading along the elliptical orbit. Since the packet
moves slowly near the outer apsidal point but faster near
the inner apsidal point, in accordance with Kepler’s laws,
it has traversed less than one-third of the orbit at
t=1Ty.

Figure 2(c) shows the ESS at t =]T,. It is moving
rapidly and has substantial spread along the elliptical or-
bit. Since /=30 is relatively large for a state with 7=45,
the ESS remains at some distance from the nucleus and
therefore exhibits none of the radial oscillations seen for
RSS p states [12]. The radial distance to the inner apsidal
point is r;,, ~517 a.u.

Figures 2(d) and 2(e) show the wave packet at the times
t=2T, and t =T, respectively. The motion is slower
again as the outer apsidal point is approached, and the
packet becomes more localized again. At t =T, the
wave packet closely resembles the initial wave packet.
However, the motion is not exactly periodic. For times
t >>T,, the wave packet collapses and a cycle of revivals
and superrevivals commences.

The localization in the angle ¢ oscillates as the wave
packet goes through a classical orbital cycle. At ¢t =0, it
is highly localized in angle, while at ¢t =1T, the wave
packet is extended around much of the orbit. By t =T,
the wave packet has localized again. This oscillation is
characteristic of a squeezed state. The radial uncertain-
ties are oscillating also, although not as noticeably as for
a p-state radial wave function.

In Fig. 3, two ESS with different values of 7 and hence
different orbital eccentricities are compared. Both pack-
ets have i=45 and AL=2.5. They are viewed at t =1 T
from a point on the positive x axis looking towards the
nucleus. Figure 3(a), with /=30, is the same as Fig. 2(c)
but viewed from a different perspective. The ellipticity of
the orbit is manifest. Figure 3(b) shows a different ESS
with 7=40, for which a~20.412, =40, y,~=0.007 52,
¥1=0, and 6§ =~12.753. Since AL is unchanged, § remains
the same. As expected, the orbit is closer to circular.
For this case, r;,~1113 a.u., which is more than twice
the value for the /=30 wave packet in Fig. 3(a).

C. Features of ESS

The literature contains examples of quantum wave
packets other than the ESS that are nonetheless localized
on classical elliptical orbits. In this subsection, we dis-
cuss a few additional features of the ESS and provide a
comparison with some of these other approaches [8,9].

The methods of Refs. [8,9] both involve the Runge-
Lenz vector. In the classical Coulomb problem, this vec-
tor is a conserved quantity with magnitude equal to the
eccentricity of the orbit and with orientation along the
semimajor axis pointing from the focus to the inner apsi-
dal point. At the quantum level, the Runge-Lenz opera-
tor in atomic units takes the form

>

A={FXL-Lxp)— . (42)

In Ref. [8], the Runge-Lenz operator is scaled by a fac-
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tor involving the energy operator at a fixed value of n.
Within a fixed n manifold, the Coulomb problem exhibits
an SO(4) symmetry. Coherent states for the SO(4) sym-
metry can be constructed using the scaled Runge-Lenz
operator and the angular-momentum operator. The re-
sulting wave packets are localized on elliptical orbits.
However, they are stationary states that do not follow the
classical motion.

A similar approach is taken in Ref. [9]. Planar motion
is considered, and a subset of the operators is used to
form an o(3) algebra. The operators 4, 4,, and L satis-

fy
[4,,4,]=—2HL , (43)

where H is the Hamiltonian. The associated uncertainty
relation is

AA,AA4,>|(HL)| . (44)

(Cl) y (a.u.)

(b) y (au)

FIG. 3. Comparison of the modulus squared (arbitrary units)
of two ESS with different eccentricities at the time ¢ =% o1
Both wave packets have 7i=45 and AL=2.5 and are viewed
from a point on the positive x axis looking in toward the origin.
For (a), =30, while for (b), I=40.
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Quantum solutions minimizing this relation are found.
The resulting states are also stationary and are elliptical
in shape. By taking a Gaussian-weighted superposition
of these states with different values of n, a localized wave
packet is produced that moves along a keplerian orbit
and follows the classical motion. In the limit of large an-
gular quantum numbers, Eq. (44) approximately holds for
these superpositions.

The ESS are different from the solutions of Refs. [8,9].
They naturally contain a superposition of n and [ states,
and they are minimum-uncertainty solutions for both ra-
dial and angular operators. The shape of the elliptical or-
bit is determined by the parameters of the ESS, which in
turn depend on the experimentally determined parame-
ters 77, I, and AL.

A natural question to ask is whether the ESS also pro-
vide a minimum-uncertainty solution of Eq. (44). For the
example plotted in Fig. 2, the values of the ESS parame-
ters given in Sec. IV can be used to determine numerical-
ly the left- and right-hand sides of (44). We find
AA,AA4,~0.1214, while [(HL)|=0.0099 in atomic
units. Defining the quantity

_AA.AA4,—|(HL)]
B [(HL)] ’

we find Z ~11.26 for the ESS wave function in Fig. 2(a).
A minimum-uncertainty solution of Eq. (44) would have
Z=0.

Another interesting issue is the relationship between
the ESS parameters a, f3, Yo, 71, 6 and quantities deter-
mining the shape of the corresponding classical orbital el-
lipse, namely, the semimajor axis a, the angle 7 it makes
with the x axis, and the eccentricity e. The Ehrenfest
theorem requires that the mean values of the position
(7) and the momentum {p) evolve according to the
equations d{7)/dt ={p) and d{p)/dt=—(VV(r)).
This means that the mean position moves along the clas-
sical trajectory if (VV(7))=VV((7)). However, this
condition is not satisfied for the Coulomb problem. The
connection between the ESS parameters and the shape of
the corresponding classical orbit is therefore difficult to
establish analytically and is partly a matter of definition.

If the quantum motion did follow the classical trajecto-
ry, knowledge of the initial position and momentum
would suffice to determine it. One useful approximate re-
lationship between the ESS parameters and those of the
classical orbit in Cartesian coordinates is therefore given
by taking ESS expectations of suitable quantities as the
initial data for a classical trajectory and thereby estab-
lishing the desired relation. This procedure has the ad-
vantage of being analytical and providing insight about
the meaning of the ESS parameters.

For present purposes, we choose to express the ESS pa-
rameters as functions of a, 7, e, and the widths Ar and &
of the ESS, which have no direct classical counterpart.
We find

(45)

Iy(28) 4 e?sin®
=_2"""_°2 i+ —_esmm
Yo 7,(28) 2(Ar) ecosn— T _—_ cosn |’ (46)
a=2y3Ar?—1, @7)
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0.05

FIG. 4 A plot of the quantity Z=(AA4,AA,
—|(HL)|)/|{HL)| as a function of the semimajor axis a in
atomic units and the eccentricity e of the associated classical or-
bits.

3
o (a+1? 1o(28)
B argarn e | T8y | 48
_ 2a+1 . [To28) ]
YT T 28+ 1) ¢ S | T,(28) “9

Note that there are two solutions to the equation for S,
reflecting the two possible directions the trajectory is fol-
lowed. For the examples considered above, =0 by as-
sumption, corresponding to an ESS located at the outer
apsidal point.

As an example of the use of these expressions, we can
address the general issue of whether Eq. (44) is minimized
by an ESS for any shape of classical orbit. For
definiteness, choose Ar and AL to match the example in
Fig. 2, and take 7=0. Then, the expressions (49) can be
used to obtain the quantity Z of Eq. (45) as a function of
the semimajor axis a and eccentricity e. Figure 4 shows a
plot of the resulting lengthy expression for Z, which pro-
vides a normalized measure of closeness to minimum un-
certainty in Eq. (44). The value Z=0 corresponds to
minimum uncertainty. Figure 4 shows that Z >0 for the
full range of associated classical orbits displayed in the
graph. This demonstrates more generally that the ESS
are different from the superposition of o(3) coherent
states presented in Ref. [9].

V. INCORPORATION OF QUANTUM DEFECTS

Most experiments studying the properties of Rydberg
wave packets are performed using alkali-metal atoms.
These have quantum defects causing energy-level shifts
away from the hydrogenic values. It is therefore useful to
have a relatively simple and analytical theory for alkali-
metal atoms that has eigenstates with the attractive prop-
erties of hydrogenic eigenfunctions such as completeness
and orthogonality, but that generates exact quantum-
defect energies. A model satisfying these criteria, called
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supersymmetry-based quantum-defect theory (SQDT), is
known to exist [32]. In this section, we outline the planar
analog of SQDT and sketch the construction of the asso-
ciated ESS. They may be of use in modeling packets pro-
duced in alkali-metal atoms.

The physical quantum defects 6(n,/) are empirical pa-
rameters depending in general on n and /. We define the
planar analogs 8(n, |I|) as functions of the absolute value
|7], so that a planar Rydberg series can be established
having features in common with the standard case. As
usual, the quantum defects for large n approach asymp-
totic values 8(|/|) that are independent of n.

The planar Rydberg series has the form

—1
E «= m ) (50)
where n*=n —§8(|l|). The quantum defects partially lift
the degeneracy among states having different values of
|l|. The primary objective of planar SQDT is to obtain
analytical eigenfunctions with (50) as eigenenergies. This
is accomplished by defining an effective radial potential

* |2 __ 2
1, lrp=l
r 2r2

where |1*|=]1|—8(|l|)+1I(|l]) and I(]l]) is an integer
that depends on |/|. The radial eigenstates R «,«(r) of
this potential have the form of R,; in Eq. (39) but with n
and |/| replaced by n* and |1*|, respectively. For certain
values of the integers I(|l|) and in the limit of vanishing
quantum defects, these solutions admit a supersymmetric
extension.

The set of planar SQDT eigenstates R« +(r)Y;(¢),
where Y, is an eigenstate of angular momentum, is com-
plete and orthonormal. We may choose 8(|/|) to match
the asymptotic quantum defects 8(7), with 1 >0, for the
physical alkali-metal atom. For example, for lithium s
and p states, 8(0)=~0.40 and 6(1)=~0.05. With these
values, the planar SQDT eigenstates reproduce the planar
Rydberg series for lithium.

An interesting issue is the ESS construction in the con-
text of this model. At the classical level, the presence of
the modified 1/7? term in the effective potential (51)
means the Runge-Lenz vector A4 is no longer conserved.
The orbit processes at a rate determined by the quantum
defect and is no longer a keplerian ellipse. At the quan-
tum level, the commutator of the Runge-Lenz vector
with the Hamiltonian is nonzero, and the SO(4) symme-
try is broken.

Despite these differences, the RSS construction can be
performed in the presence of quantum defects [13]. For
the present case, the oscillator variables R and P must be
modified to

Vir=-— ; (51)

L p=—1L {a,+i

-1_ (52)
¥

[+’ f 2r

where f =|I1*|/|l|. These operators obey the uncertainty
relation

ARAPZ%(;I;), (53)
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which also depends on the quantum defect. The wave
function ¥(7) minimizing this relation has the same func-
tional form as that in Eq. (5).

An ESS ¥(r,¢) can be formed as a product of an RSS
Y(r) and a CSS x(¢). The form of the solution is like
than in Eq. (28). However, some of the parameters must
be chosen differently. We choose {p,)=0 and (L )=1,
and we specify AL as before. However, (H)=E_x and

(r)=rs, differ from the previous case. Here, E_y is the

energy expectation and r}, is the outer apsidal point for
a superposition of states with quantum-defect eigenener-
gies. This means the ESS is initially located at the outer
apsidal point of a precessing ellipse. The time evolution
and revival structure depend on the quantum defects and
can be studied by expanding W(r,¢,?) in the complete set
of SQDT eigenstates.

In the above, a prescription for calculating (H ) is
needed since the SQDT potential depends on |I| and |7*|.
We can take advantage of completeness to expand the ini-
tial ESS as a superposition of SQDT eigenstates:

\If(r,¢)= ZEnIRn*I*(R)Yl(¢) ’ (54)
n,l

where the expansion coefficients ¢,;, which depend on the
ESS parameters, can be determined by inversion. The ex-
pectation value for the Hamiltonian can then be specified
as

(H)=3 |ty PE «=E_x . (55)
n,l

VI. SUMMARY

In this paper, we have found analytical solutions to the
planar Coulomb problem, called elliptical squeezed
states, that minimize coordinate-momentum uncertainty
relations and that move along classical keplerian orbits.
The paper also provides an extension of the analysis to
the case where quantum defects are present, which is of
experimental importance but theoretically difficult to
treat in other approaches because quantum defects break
the O(4) symmetry.

The ESS provide an analytical tool for studying the
quantum-classical correspondence in the Coulomb prob-
lem. They may also be used to describe minimum-
uncertainty Rydberg wave packets excited by short laser
pulses with external fields present. To match an ESS to a
Rydberg wave packet, we initialize the ESS at the outer
apsidal point of the orbit. The five ESS parameters are
given in terms of the expectation values of the radial posi-
tion, the radial momentum, the energy, the angular
momentum, and the spread in the angular momentum.

We have studied the time evolution of the ESS for ex-
amples with different semimajor axes and eccentricities.
The wave packets move along an elliptical trajectory with
the classical keplerian orbit period. The squeezing of the
ESS is evident as the width of the wave packet oscillates
during the motion. The ESS maintain their form for
several orbital cycles before decoherence.
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