102 research outputs found
Ten Years of Surveillance for Invasive Streptococcus pneumoniae during the Era of Antiretroviral Scale-Up and Cotrimoxazole Prophylaxis in Malawi
OBJECTIVE: To document trends in invasive pneumococcal disease (IPD) in a central hospital in Malawi during the period of national scale-up of antiretroviral therapy (ART) and cotrimoxazole prophylaxis. METHODS: Between 1 January 2000 and 31 December 2009 almost 100,000 blood cultures and 40,000 cerebrospinal fluid (CSF) cultures were obtained from adults and children admitted to the Queen Elizabeth Central Hospital, Blantyre, Malawi with suspected severe bacterial infection. RESULTS: 4,445 pneumococcal isolates were obtained over the 10 year period. 1,837 were from children: 885 (19.9%) from blood and 952 (21.4%) from CSF. 2,608 were from adults: 1,813 (40.8%) from blood and 795 (17.9%) from CSF. At the start of the surveillance period cotrimoxazole resistance was 73.8% and at the end was 92.6%. Multidrug resistance (MDR) was present in almost one third of isolates and was constant over time. Free ART was introduced in Malawi in 2004. From 2005 onwards there was a decline in invasive pneumococcal infections with a negative correlation between ART scale-up and the decline in IPD (Pearson's correlation r = -0.91; p<0.001). CONCLUSION: During 2004-2009, national ART scale-up in Malawi was associated with a downward trend in IPD at QECH. The introduction of cotrimoxazole prophylaxis in HIV-infected groups has not coincided with a further increase in pneumococcal cotrimoxazole or multidrug resistance. These data highlight the importance of surveillance for high disease burden infections such as IPD in the region, which will be vital for monitoring pneumococcal conjugate vaccine introduction into national immunisation programmes
Prevalence of celiac disease in multiple sclerosis
<p>Abstract</p> <p>Background</p> <p>Celiac disease (CD) is a common systemic disease related to a permanent intolerance to gluten and is often associated with different autoimmune and neurological diseases. Its mean prevalence in the general population is 1-2% worldwide. Our aim was to study the prevalence of celiac disease in a prospective series of Multiple Sclerosis (MS) patients and their first-degree relatives.</p> <p>Methods</p> <p>We analyzed the prevalence of serological, histological and genetic CD markers in a series of 72 MS patients and in their 126 first-degree relatives, compared to 123 healthy controls.</p> <p>Results</p> <p>Tissue IgA-anti-transglutaminase-2 antibodies were positive in 7 MS patients (10%), compared to 3 healthy controls (2.4%) (p < 0.05). OR: 5.33 (CI-95%: 1.074-26.425). No differences were found in HLA-DQ2 markers between MS patients (29%) and controls (26%) (NS).</p> <p>We detected mild or moderate villous atrophy (Marsh III type) in duodenal biopsies, in 8 MS patients (11.1%). We also found a high proportion of CD among first-degree relatives: 23/126 (32%). Several associated diseases were detected, mainly dermatitis 41 (57%) and iron deficiency anemia in 28 (39%) MS patients. We also found in them, an increased frequency of circulating auto-antibodies such as anti-TPO in 19 (26%), ANA in 11 (15%) and AMA in 2 (3%).</p> <p>Conclusions</p> <p>We have found an increased prevalence of CD in 8 of the 72 MS patients (11.1%) and also in their first-degree relatives (23/126 [32%]). Therefore, increased efforts aimed at the early detection and dietary treatment of CD, among antibody-positive MS patients, are advisable.</p
Identifying candidate genes affecting developmental time in Drosophila melanogaster: pervasive pleiotropy and gene-by-environment interaction
<p>Abstract</p> <p>Background</p> <p>Understanding the genetic architecture of ecologically relevant adaptive traits requires the contribution of developmental and evolutionary biology. The time to reach the age of reproduction is a complex life history trait commonly known as developmental time. In particular, in holometabolous insects that occupy ephemeral habitats, like fruit flies, the impact of developmental time on fitness is further exaggerated. The present work is one of the first systematic studies of the genetic basis of developmental time, in which we also evaluate the impact of environmental variation on the expression of the trait.</p> <p>Results</p> <p>We analyzed 179 co-isogenic single <it>P[GT1]-</it>element insertion lines of <it>Drosophila melanogaster </it>to identify novel genes affecting developmental time in flies reared at 25°C. Sixty percent of the lines showed a heterochronic phenotype, suggesting that a large number of genes affect this trait. Mutant lines for the genes <it>Merlin </it>and <it>Karl </it>showed the most extreme phenotypes exhibiting a developmental time reduction and increase, respectively, of over 2 days and 4 days relative to the control (a co-isogenic <it>P</it>-element insertion free line). In addition, a subset of 42 lines selected at random from the initial set of 179 lines was screened at 17°C. Interestingly, the gene-by-environment interaction accounted for 52% of total phenotypic variance. Plastic reaction norms were found for a large number of developmental time candidate genes.</p> <p>Conclusion</p> <p>We identified components of several integrated time-dependent pathways affecting egg-to-adult developmental time in <it>Drosophila</it>. At the same time, we also show that many heterochronic phenotypes may arise from changes in genes involved in several developmental mechanisms that do not explicitly control the timing of specific events. We also demonstrate that many developmental time genes have pleiotropic effects on several adult traits and that the action of most of them is sensitive to temperature during development. Taken together, our results stress the need to take into account the effect of environmental variation and the dynamics of gene interactions on the genetic architecture of this complex life-history trait.</p
Retrograde traffic in the biosynthetic-secretory route
In the biosynthetic-secretory route from the rough endoplasmic reticulum, across the pre-Golgi intermediate compartments, the Golgi apparatus stacks, trans Golgi network, and post-Golgi organelles, anterograde transport is accompanied and counterbalanced by retrograde traffic of both membranes and contents. In the physiologic dynamics of cells, retrograde flow is necessary for retrieval of molecules that escaped from their compartments of function, for keeping the compartments’ balances, and maintenance of the functional integrities of organelles and compartments along the secretory route, for repeated use of molecules, and molecule repair. Internalized molecules may be transported in retrograde direction along certain sections of the secretory route, and compartments and machineries of the secretory pathway may be misused by toxins. An important example is the toxin of Shigella dysenteriae, which has been shown to travel from the cell surface across endosomes, and the Golgi apparatus en route to the endoplasmic reticulum, and the cytosol, where it exerts its deleterious effects. Most importantly in medical research, knowledge about the retrograde cellular pathways is increasingly being utilized for the development of strategies for targeted delivery of drugs to the interior of cells. Multiple details about the molecular transport machineries involved in retrograde traffic are known; a high number of the molecular constituents have been characterized, and the complicated fine structural architectures of the compartments involved become more and more visible. However, multiple contradictions exist, and already established traffic models again are in question by contradictory results obtained with diverse cell systems, and/or different techniques. Additional problems arise by the fact that the conditions used in the experimental protocols frequently do not reflect the physiologic situations of the cells. Regular and pathologic situations often are intermingled, and experimental treatments by themselves change cell organizations. This review addresses physiologic and pathologic situations, tries to correlate results obtained by different cell biologic techniques, and asks questions, which may be the basis and starting point for further investigations
Recommended from our members
Natural resistance to Meningococcal Disease related to CFH loci: Meta-analysis of genome-wide association studies
Meningococcal disease (MD) remains an important infectious cause of life threatening infection in both industrialized and resource poor countries. Genetic factors influence both occurrence and severity of presentation, but the genes responsible are largely unknown. We performed a genome-wide association study (GWAS) examining 5,440,063 SNPs in 422 Spanish MD patients and 910 controls. We then performed a meta-analysis of the Spanish GWAS with GWAS data from the United Kingdom (combined cohorts: 897 cases and 5,613 controls; 4,898,259 SNPs). The meta-analysis identified strong evidence of association (-value≤5×10) in 20 variants located at the gene. SNP rs193053835 showed the most significant protective effect (Odds Ratio (OR)=0.62, 95% confidence interval (C.I.)=0.52–0.73; -value=9.62×10). Five other variants had been previously reported to be associated with susceptibility to MD, including the missense SNP rs1065489 (OR=0.64, 95% C.I.)=0.55–0.76, =3.25×10). Theoretical predictions point to a functional effect of rs1065489, which may be directly responsible for protection against MD. Our study confirms the association of with susceptibility to MD and strengthens the importance of this link in understanding pathogenesis of the disease.This study received support from the Instituto de Salud Carlos III (Proyecto de Investigación en Salud, Acción Estratégica en Salud: proyecto GePEM PI16/01478) (A.S.); Instituto Carlos III (Intensificación de la actividad investigadora) (A.V.); Consellería de Sanidade, Xunta de Galicia (RHI07/2-intensificación actividad investigadora, PS09749 and 10PXIB918184PR), Instituto de Salud Carlos III (Intensificación de la actividad investigadora 2007–2012, PI16/01569), Convenio de colaboración de investigación (Wyeth España-Fundación IDICHUS 2007–2011), Convenio de colaboración de investigación (Novartis España-Fundación IDICHUS 2010–2011), Fondo de Investigación Sanitaria (FIS; PI070069/PI1000540) del plan nacional de I+ D+ I and ‘fondos FEDER’ (F.M.T.). More information at: www. esigem.org. The UK cohort was established with support of the Meningitis Research Foundation (UK), who provide ongoing support, and the European Society for Paediatric Infectious Diseases supported the establishment of the international collaboration. This study makes use of data generated by the Wellcome Trust Case-Control Consortium 2. A full list of the investigators who contributed to the generation of the data is available from www. wtccc.org.uk. Funding for the project was provided by the Wellcome Trust under award 085475. The research leading to these results has received funding from the European Union’s Seventh Framework Programme under EC-GA No. 279185 (EUCLIDS)
Life-threatening infections in children in Europe (the EUCLIDS Project): a prospective cohort study
Background: Sepsis and severe focal infections represent a substantial disease burden in children admitted to hospital. We aimed to understand the burden of disease and outcomes in children with life-threatening bacterial infections in Europe.
Methods: The European Union Childhood Life-threatening Infectious Disease Study (EUCLIDS) was a prospective, multicentre, cohort study done in six countries in Europe. Patients aged 1 month to 18 years with sepsis (or suspected sepsis) or severe focal infections, admitted to 98 participating hospitals in the UK, Austria, Germany, Lithuania, Spain, and the Netherlands were prospectively recruited between July 1, 2012, and Dec 31, 2015. To assess disease burden and outcomes, we collected demographic and clinical data using a secured web-based platform and obtained microbiological data using locally available clinical diagnostic procedures.
Findings: 2844 patients were recruited and included in the analysis. 1512 (53·2%) of 2841 patients were male and median age was 39·1 months (IQR 12·4–93·9). 1229 (43·2%) patients had sepsis and 1615 (56·8%) had severe focal infections. Patients diagnosed with sepsis had a median age of 27·6 months (IQR 9·0–80·2), whereas those diagnosed with severe focal infections had a median age of 46·5 months (15·8–100·4; p<0·0001). Of 2844 patients in the entire cohort, the main clinical syndromes were pneumonia (511 [18·0%] patients), CNS infection (469 [16·5%]), and skin and soft tissue infection (247 [8·7%]). The causal microorganism was identified in 1359 (47·8%) children, with the most prevalent ones being Neisseria meningitidis (in 259 [9·1%] patients), followed by Staphylococcus aureus (in 222 [7·8%]), Streptococcus pneumoniae (in 219 [7·7%]), and group A streptococcus (in 162 [5·7%]). 1070 (37·6%) patients required admission to a paediatric intensive care unit. Of 2469 patients with outcome data, 57 (2·2%) deaths occurred: seven were in patients with severe focal infections and 50 in those with sepsis.
Interpretation: Mortality in children admitted to hospital for sepsis or severe focal infections is low in Europe. The disease burden is mainly in children younger than 5 years and is largely due to vaccine-preventable meningococcal and pneumococcal infections. Despite the availability and application of clinical procedures for microbiological diagnosis, the causative organism remained unidentified in approximately 50% of patients
- …