2,168 research outputs found

    Relevance of NCOA4 functions in tissue regeneration

    Get PDF
    Iron is an essential microelement for DNA replication since it acts as a cofactor for several enzymes involved in DNA metabolism such as DNA polymerases, DNA primases and Ribonucleotide Reductase. Indeed, cells tightly control intracellular iron levels and upon low iron condition they arrest cell cycle avoiding S phase entry and DNA replication. The Nuclear Receptor CoActivator 4 (NCOA4) has been described as a novel regulator of iron homeostasis that upon low iron conditions controls intracellular iron levels by promoting lysosomal ferritin degradation (Ferritinophagy). Moreover, NCOA4 also acts as a negative regulator of DNA replication by inhibiting DNA replication origin activation via its interaction with MCM7 protein, a component of the MCM2-7 complex which represents the processive helicase of the replication fork. We demonstrated that NCOA4 couples the control of DNA replication activation to intracellular iron levels. Indeed, NCOA4 acts as iron sensing protein which upon low iron conditions increases its binding onto chromatin to block activation of DNA replication origins. Loss of NCOA4 in cells promotes unscheduled entry in S phase, replication stress and DNA damage with decreased cell viability. In this thesis, we demonstrated that the function of NCOA4 in coupling iron levels to DNA replication is relevant for tissue regeneration. Mice with genetic inactivation of NCOA4 (NCOA4 KO) displayed impaired intestinal regeneration after epithelial injury induced by Sodium Dextran Sulfate compared to WT animals, due to accumulation of DNA damage, activation of apoptosis and reduction of intestinal stem cell pool. Furthermore, we demonstrated that NCOA4 activity also affected the proliferation of bone marrow derived cells. BM-derived cells from NCOA4 KO mice exhibited a significant self-renewal reduction after 5-FU treatment compared to WT ones. Since NCOA4 was involved both in controlling iron availability and DNA replication activation we investigated which of NCOA4 functions mainly affected proliferation. We treated mice with iron dextran injections to supply iron availability to sustain tissue regeneration during DSS treatment. We confirmed that, despite iron supply, NCOA4 KO mice showed reduced intestinal regenerative response and presence of DNA damage after DSS treatment. Additionally, we used HeLa cells stably silenced for NCOA4 to evaluate Fe-S clusters enzymes expression in silenced cells at the steady state and upon iron chelation with Deferoxamine. In this condition, the expression of Fe-S clusters enzymes was not affected by the absence of NCOA4. All together our findings indicated a crucial role for NCOA4 in tissue regeneration and cellular proliferation. Particularly, it is the NCOA4 control of DNA replication origins activation, more than the ferritin degradation, to be essential for an appropriate tissue regeneration

    The Effects of Parenteral K1 Administration in Pseudoxanthoma Elasticum Patients Versus Controls. A Pilot Study

    Get PDF
    Introduction: Pseudoxanthoma elasticum (PXE) is a rare disease caused by mutations in the ABCC6 gene. Vitamin K1 is involved in the posttranslational carboxylation of some proteins related to inhibition of the calcification process. Our aim was to investigate, in patients affected by PXE, baseline levels of vitamin K1-dependent proteins and -metabolites and whether parenteral administration of phytomenadione was effective in modulating their levels. Methods: We included eight PXE patients with typical clinical symptoms (skin, retina, and vascular calcification) and two ABCC6 causative mutations; 13 clinically unaffected first-degree patients' relatives (9 carrying one ABCC6 mutation and 4 non-carriers). We assessed urinary vitamin K1 metabolites and serum Glu- and Gla-OC, Gas6 and undercaboxylated prothrombin (PIVKA-II), at baseline and after 1 and 6\u2009weeks after a single intramuscular injection of 10\u2009mg vitamin K1. Results: Comparison of PXE patients, heterozygous, and non-carriers revealed differences in baseline levels of serum MK-4 and of urinary vitamin K metabolites. The response to phytomenadione administration on vitamin K-dependent proteins was similar in all groups. Conclusion: The physiological axis between vitamin K1 and vitamin K-dependent proteins is preserved; however, differences in the concentration of vitamin K metabolites and of MK-4 suggest that vitamin K1 metabolism/catabolism could be altered in PXE patients

    NCOA4-mediated ferritinophagy in macrophages is crucial to sustain erythropoiesis in mice

    Get PDF
    The Nuclear Receptor Coactivator 4 (NCOA4) promotes ferritin degradation and Ncoa4-ko mice in C57BL/6 background show microcytosis and mild anemia, aggravated by iron deficiency. To understand tissue specific contribution of NCOA4-mediated ferritinophagy we explored the effect of Ncoa4 genetic ablation in the iron-rich strain Sv129/J. Increased body iron content protects mice from anemia and, in basal conditions, Sv129/J Ncoa4-ko mice show only microcytosis; nevertheless, when fed a low-iron diet they develop a more severe anemia compared to wild-type animals. Reciprocal bone marrow (BM) transplantation from wild-type donors into Ncoa4-ko and from Ncoa4-ko into wild-type mice revealed that microcytosis and susceptibility to iron deficiency anemia depend on BM-derived cells. Erythropoiesis reconstitution with RBC count and hemoglobin normalization occurred at the same rate in transplanted animals independently of the genotype. Importantly, NCOA4 loss did not affect terminal erythropoiesis in iron deficiency, both in total and specific BM Ncoa4-ko animals compared to controls. On the contrary, upon a low iron diet, spleen from wild-type animals with Ncoa4-ko BM displayed marked iron retention compared to (wild-type BM) controls, indicating defective macrophage iron release in the former. Thus, EPO administration failed to mobilize iron from stores in Ncoa4-ko animals. Furthermore, Ncoa4 inactivation in thalassemic mice did not worsen the hematological phenotype. Overall our data reveal a major role for NCOA4-mediated ferritinophagy in macrophages to favor iron release for erythropoiesis, especially in iron deficiency

    Inverse Association between Dietary Iron Intake and Gastric Cancer: A Pooled Analysis of Case-Control Studies of the Stop Consortium

    Full text link
    Background: Inconsistent findings have been reported regarding the relationship between dietary iron intake and the risk of gastric cancer (GC). Methods: We pooled data from 11 case-control studies from the Stomach Cancer Pooling (StoP) Project. Total dietary iron intake was derived from food frequency questionnaires combined with national nutritional tables. We derived the odds ratios (ORs) and 95% confidence intervals (CIs) for quartiles of dietary iron through multivariable unconditional logistic regression models. Secondary analyses stratified by sex, smoking status, caloric intake, anatomical subsite and histological type were performed. Results: Among 4658 cases and 12247 controls, dietary iron intake was inversely associated with GC (per quartile OR 0.88; 95% CI: 0.83-0.93). Results were similar between cardia (OR = 0.85, 95% CI = 0.77-0.94) and non-cardia GC (OR = 0.87, 95% CI = 0.81-0.94), and for diffuse (OR = 0.79, 95% CI = 0.69-0.89) and intestinal type (OR = 0.88, 95% CI = 0.79-0.98). Iron intake exerted an independent effect from that of smoking and salt intake. Additional adjustment by meat and fruit/vegetable intake did not alter the results. Conclusions: Dietary iron is inversely related to GC, with no difference by subsite or histological type. While the results should be interpreted with caution, they provide evidence against a direct effect of iron in gastric carcinogenesis

    Implementation of effect biomarkers in human biomonitoring studies: A systematic approach synergizing toxicological and epidemiological knowledge

    Get PDF
    ReviewHuman biomonitoring (HBM) studies have highlighted widespread daily exposure to environmental chemicals. Some of these are suspected to contribute to adverse health outcomes such as reproductive, neurological, and metabolic disorders, among other developmental and chronic impairments. One of the objectives of the H2020 European Human Biomonitoring Initiative (HBM4EU) was the development of informative effect biomarkers for application in a more systematic and harmonized way in large-scale European HBM studies. The inclusion of effect biomarkers would complement exposure data with mechanistically-based information on early and late adverse effects. For this purpose, a stepwise strategy was developed to identify and implement a panel of validated effect biomarkers in European HBM studies. This work offers an overview of the complete procedure followed, from comprehensive literature search strategies, selection of criteria for effect biomarkers and their classification and prioritization, based on toxicological data and adverse outcomes, to pilot studies for their analytical, physiological, and epidemiological validation. We present the example of one study that demonstrated the mediating role of the effect biomarker status of brain-derived neurotrophic factor BDNF in the longitudinal association between infant bisphenol A (BPA) exposure and behavioral function in adolescence. A panel of effect biomarkers has been implemented in the HBM4EU Aligned Studies as main outcomes, including traditional oxidative stress, reproductive, and thyroid hormone biomarkers. Novel biomarkers of effect, such as DNA methylation status of BDNF and kisspeptin (KISS) genes were also evaluated as molecular markers of neurological and reproductive health, respectively. A panel of effect biomarkers has also been applied in HBM4EU occupational studies, such as micronucleus analysis in lymphocytes and reticulocytes, whole blood comet assay, and malondialdehyde, 8-oxo-2′-deoxyguanosine and untargeted metabolomic profile in urine, to investigate, for example, biological changes in response to hexavalent chromium Cr(VI) exposure. The use of effect biomarkers in HBM4EU has demonstrated their ability to detect early biological effects of chemical exposure and to identify subgroups that are at higher risk. The roadmap developed in HBM4EU confirms the utility of effect biomarkers, and support one of the main objectives of HBM research, which is to link exposure biomarkers to mechanistically validated effect and susceptibility biomarkers in order to better understand the public health implications of human exposure to environmental chemicals.Supported by the European Union's Horizon 2020 research and innovation program projects HBM4EU [grant number 733032]info:eu-repo/semantics/publishedVersio

    A systematic approach synergizing toxicological and epidemiological knowledge

    Get PDF
    Funding Information: This work was supported by the European Union's Horizon 2020 research and innovation program projects HBM4EU [grant number 733032 ]. Authors acknowledge the editorial assistance of Richard Davies. Publisher Copyright: © 2023 The Author(s)Human biomonitoring (HBM) studies have highlighted widespread daily exposure to environmental chemicals. Some of these are suspected to contribute to adverse health outcomes such as reproductive, neurological, and metabolic disorders, among other developmental and chronic impairments. One of the objectives of the H2020 European Human Biomonitoring Initiative (HBM4EU) was the development of informative effect biomarkers for application in a more systematic and harmonized way in large-scale European HBM studies. The inclusion of effect biomarkers would complement exposure data with mechanistically-based information on early and late adverse effects. For this purpose, a stepwise strategy was developed to identify and implement a panel of validated effect biomarkers in European HBM studies. This work offers an overview of the complete procedure followed, from comprehensive literature search strategies, selection of criteria for effect biomarkers and their classification and prioritization, based on toxicological data and adverse outcomes, to pilot studies for their analytical, physiological, and epidemiological validation. We present the example of one study that demonstrated the mediating role of the effect biomarker status of brain-derived neurotrophic factor BDNF in the longitudinal association between infant bisphenol A (BPA) exposure and behavioral function in adolescence. A panel of effect biomarkers has been implemented in the HBM4EU Aligned Studies as main outcomes, including traditional oxidative stress, reproductive, and thyroid hormone biomarkers. Novel biomarkers of effect, such as DNA methylation status of BDNF and kisspeptin (KISS) genes were also evaluated as molecular markers of neurological and reproductive health, respectively. A panel of effect biomarkers has also been applied in HBM4EU occupational studies, such as micronucleus analysis in lymphocytes and reticulocytes, whole blood comet assay, and malondialdehyde, 8-oxo-2′-deoxyguanosine and untargeted metabolomic profile in urine, to investigate, for example, biological changes in response to hexavalent chromium Cr(VI) exposure. The use of effect biomarkers in HBM4EU has demonstrated their ability to detect early biological effects of chemical exposure and to identify subgroups that are at higher risk. The roadmap developed in HBM4EU confirms the utility of effect biomarkers, and support one of the main objectives of HBM research, which is to link exposure biomarkers to mechanistically validated effect and susceptibility biomarkers in order to better understand the public health implications of human exposure to environmental chemicals.publishersversionpublishe

    Common and rare variants in TMEM175 gene concur to the pathogenesis of Parkinson’s Disease in Italian patients

    Get PDF
    Parkinson’s disease (PD) represents the most common neurodegenerative movement disorder. We recently identified 16 novel genes associated with PD. In this study, we focused the attention on the common and rare variants identified in the lysosomal K+ channel TMEM175. The study includes a detailed clinical and genetic analysis of 400 cases and 300 controls. Molecular studies were performed on patient-derived fibroblasts. The functional properties of the mutant channels were assessed by patch-clamp technique and co-immunoprecipitation. We have found that TMEM175 was highly expressed in dopaminergic neurons of the substantia nigra pars compacta and in microglia of the cerebral cortex of the human brain. Four common variants were associated with PD, including two novel variants rs2290402 (c.-10C > T) and rs80114247 (c.T1022C, p.M341T), located in the Kozak consensus sequence and TM3II domain, respectively. We also disclosed 13 novel highly penetrant detrimental mutations in the TMEM175 gene associated with PD. At least nine of these mutations (p.R35C, p. R183X, p.A270T, p.P308L, p.S348L, p. L405V, p.R414W, p.P427fs, p.R481W) may be sufficient to cause the disease, and the presence of mutations of other genes correlated with an earlier disease onset. In vitro functional analysis of the ion channel encoded by the mutated TMEM175 gene revealed a loss of the K+ conductance and a reduced channel affinity for Akt. Moreover, we observed an impaired autophagic/lysosomal proteolytic flux and an increase expression of unfolded protein response markers in patient-derived fibroblasts. These data suggest that mutations in TMEM175 gene may contribute to the pathophysiology of PD

    Demographic, clinical, biomarker, and neuropathological correlates of posterior cortical atrophy: an international cohort study and individual participant data meta-analysis

    Get PDF
    Background: Posterior cortical atrophy is a rare syndrome characterised by early, prominent, and progressive impairment in visuoperceptual and visuospatial processing. The disorder has been associated with underlying neuropathological features of Alzheimer's disease, but large-scale biomarker and neuropathological studies are scarce. We aimed to describe demographic, clinical, biomarker, and neuropathological correlates of posterior cortical atrophy in a large international cohort.// Methods: We searched PubMed between database inception and Aug 1, 2021, for all published research studies on posterior cortical atrophy and related terms. We identified research centres from these studies and requested deidentified, individual participant data (published and unpublished) that had been obtained at the first diagnostic visit from the corresponding authors of the studies or heads of the research centres. Inclusion criteria were a clinical diagnosis of posterior cortical atrophy as defined by the local centre and availability of Alzheimer's disease biomarkers (PET or CSF), or a diagnosis made at autopsy. Not all individuals with posterior cortical atrophy fulfilled consensus criteria, being diagnosed using centre-specific procedures or before development of consensus criteria. We obtained demographic, clinical, biofluid, neuroimaging, and neuropathological data. Mean values for continuous variables were combined using the inverse variance meta-analysis method; only research centres with more than one participant for a variable were included. Pooled proportions were calculated for binary variables using a restricted maximum likelihood model. Heterogeneity was quantified using I2.// Findings: We identified 55 research centres from 1353 papers, with 29 centres responding to our request. An additional seven centres were recruited by advertising via the Alzheimer's Association. We obtained data for 1092 individuals who were evaluated at 36 research centres in 16 countries, the other sites having not responded to our initial invitation to participate to the study. Mean age at symptom onset was 59·4 years (95% CI 58·9–59·8; I2=77%), 60% (56–64; I2=35%) were women, and 80% (72–89; I2=98%) presented with posterior cortical atrophy pure syndrome. Amyloid β in CSF (536 participants from 28 centres) was positive in 81% (95% CI 75–87; I2=78%), whereas phosphorylated tau in CSF (503 participants from 29 centres) was positive in 65% (56–75; I2=87%). Amyloid-PET (299 participants from 24 centres) was positive in 94% (95% CI 90–97; I2=15%), whereas tau-PET (170 participants from 13 centres) was positive in 97% (93–100; I2=12%). At autopsy (145 participants from 13 centres), the most frequent neuropathological diagnosis was Alzheimer's disease (94%, 95% CI 90–97; I2=0%), with common co-pathologies of cerebral amyloid angiopathy (71%, 54–88; I2=89%), Lewy body disease (44%, 25–62; I2=77%), and cerebrovascular injury (42%, 24–60; I2=88%).// Interpretation: These data indicate that posterior cortical atrophy typically presents as a pure, young-onset dementia syndrome that is highly specific for underlying Alzheimer's disease pathology. Further work is needed to understand what drives cognitive vulnerability and progression rates by investigating the contribution of sex, genetics, premorbid cognitive strengths and weaknesses, and brain network integrity
    • …
    corecore