54 research outputs found

    Des plantes tropicales qui forment des mares : les broméliacées-citerne : un écosystème aquatique miniature capital pour la biodiversité

    Get PDF
    Les plantes qui présentent des structures anatomiques permettant de retenir de l'eau en permanence sont assez répandues en milieu tropical. Si beaucoup sont maintenant cultivées pour être vendues en jardineries, faisant le bonheur des amateurs, elles forment en milieu naturel des écosystèmes aquatiques encore très peu étudiés et renferment une biodiversité que l'on est loin d'avoir recensée. En Amérique centrale et du Sud, les broméliacées-citerne, qui représentent les plus nombreuses et les plus diversifiées de ces "plantes-mares", permettent à des organismes très variés d'accomplir leur cycle de vie

    Biogeochemical modelling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France)

    Get PDF
    International audienceMethane is a powerful greenhouse gas and its concentration in the atmosphere has increased over the past decades. Methane produced by methanogenic Archae can be consumed through aerobic and anaerobic oxidation pathways. In anoxic conditions found in freshwater environments such as meromictic lakes, CH4 oxidation pathways involving different terminal electron acceptors such as NO 3 , SO2 4 , and oxides of Fe and Mn are thermodynamically possible. In this study, a reactive transport model was developed to assess the relative significance of the different pathways of CH4 consumption in the water column of Lake Pavin. In most cases, the model reproduced experimental data collected from the field from June 2006 to June 2007. Although the model and the field measurements suggest that anaerobic CH4 oxidation may contribute to CH4 consumption in the water column of Lake Pavin, aerobic oxidation remains the major sink of CH4 in this lake

    Food-web structure in relation to environmental gradients and predator-prey ratios in tank-bromeliad ecosystems

    Get PDF
    Little is known of how linkage patterns between species change along environmental gradients. The small, spatially discrete food webs inhabiting tank-bromeliads provide an excellent opportunity to analyse patterns of community diversity and food-web topology (connectance, linkage density, nestedness) in relation to key environmental variables (habitat size, detrital resource, incident radiation) and predators: prey ratios. We sampled 365 bromeliads in a wide range of understorey environments in French Guiana and used gut contents of invertebrates to draw the corresponding 365 connectance webs. At the bromeliad scale, habitat size (water volume) determined the number of species that constitute food-web nodes, the proportion of predators, and food-web topology. The number of species as well as the proportion of predators within bromeliads declined from open to forested habitats, where the volume of water collected by bromeliads was generally lower because of rainfall interception by the canopy. A core group of microorganisms and generalist detritivores remained relatively constant across environments. This suggests that (i) a highly-connected core ensures food-web stability and key ecosystem functions across environments, and (ii) larger deviations in food-web structures can be expected following disturbance if detritivores share traits that determine responses to environmental changes. While linkage density and nestedness were lower in bromeliads in the forest than in open areas, experiments are needed to confirm a trend for lower food-web stability in the understorey of primary forests

    An ant-plant mutualism induces shifts in the protist community structure of a tank-bromeliad

    Get PDF
    Although ants may induce community-wide effects via changes in physical habitats in terrestrial environments, their influence on aquatic communities living in plant-held waters remains largely underexplored. The neotropical tank-bromeliad Aechmea mertensii (Bromeliaceae) occurs along forest edges in ant-gardens initiated by Camponotus femoratus or by Pachycondyla goeldii. Its leaves form wells that hold rainwater and provide suitable habitats for many aquatic organisms. We postulated that these ant-plant mutualisms indirectly affect the microbial community structure via changes in the environmental conditions experienced by the plants. To test this hypothesis, we analyzed the protist communities from 63 tank-bromeliads associated with either C. femoratus or P. goeldii (hereafter Cf-Aechmea and Pg-Aechmea) along a forest edge in French Guiana. For each plant, a large number of environmental variables (including habitat structure, food resources, incident radiation and the presence of aquatic invertebrates) were quantified to determine their relative importance in driving any observed differences across ant-associated plants. Pg-Aechmea are located in sun-exposed areas and hold low volumes of water and low amounts of detritus, whereas Cf-Aechmea are located in partially shaded areas and accumulate higher amounts of water and detritus. Protists (i.e., protozoa and algae) inhabiting Cf-Aechmea exhibit greater richness and abundances than those in Pg-Aechmea. Variations in detritus content, number of leaves, incident radiation, and the epiphyte richness of the ant-garden were the main factors explaining the variation in protist richness. A shift in the functional group composition of protists between bromeliads tended by different ant species suggested that mutualistic ants indirectly mediate changes in the microbial food web

    Are Algae Relevant to the Detritus-Based Food Web in Tank-Bromeliads?

    Get PDF
    We assessed the occurrence of algae in five species of tank-bromeliads found in contrasting environmental sites in a Neotropical, primary rainforest around the Nouragues Research Station, French Guiana. The distributions of both algal abundance and biomass were examined based on physical parameters, the morphological characteristics of bromeliad species and with regard to the structure of other aquatic microbial communities held in the tanks. Algae were retrieved in all of the bromeliad species with mean densities ranging from ∼102 to 104 cells/mL. Their biomass was positively correlated to light exposure and bacterial biomass. Algae represented a tiny component of the detrital food web in shaded bromeliads but accounted for up to 30 percent of the living microbial carbon in the tanks of Catopsis berteroniana, located in a highly exposed area. Thus, while nutrient supplies are believed to originate from wind-borne particles and trapped insects (i.e., allochtonous organic matter), our results indicate that primary producers (i.e., autochtonous organic matter) are present in this insectivorous bromeliad. Using a 24-h incubation of size-fractionated and manipulated samples from this plant, we evaluated the impact of mosquito foraging on algae, other microorganisms and rotifers. The prey assemblages were greatly altered by the predation of mosquito larvae. Grazing losses indicated that the dominant algal taxon, Bumilleriopsis sp., like protozoa and rotifers, is a significant part of the diet of mosquito larvae. We conclude that algae are a relevant functional community of the aquatic food web in C. berteroniana and might form the basis of a complementary non-detrital food web

    Environmental determinants of macroinvertebrate diversity in small water bodies: insights from tank-bromeliads

    Get PDF
    The interlocking leaves of tank-forming bromeliads (Bromeliaceae) collect rainwater and detritus, thus creating a freshwater habitat for specialized organisms. Their abundance and the possibility of quantifying communities with accuracy give us unparalleled insight into how changes in local to regional environments influence community diversity in small water bodies. We sampled 365 bromeliads (365 invertebrate communities) along a southeastern to northwestern range in French Guiana. Geographic locality determined the species pool for bromeliad invertebrates, and local environments determined the abundance patterns through the selection of traits that are best adapted to the bromeliad habitats. Patterns in community structure mostly emerged from patterns of predator species occurrence and abundance across local-regional environments, while the set of detritivores remained constant. Water volume had a strong positive correlation with invertebrate diversity, making it a biologically relevant measure of the pools' carrying capacity. The significant effects of incoming detritus and incident light show that changes in local environments (e.g., the conversion of forest to cropping systems) strongly influence freshwater communities. Because changes in local environments do not affect detritivores and predators equally, one may expect functional shifts as sets of invertebrates with particular traits are replaced or complemented by other sets with different traits

    The significance of transparent exopolymeric particles in the vertical distribution of bacteria and heterotrophic nanoflagellates in Lake Pavin

    No full text
    International audienceThe abundance, size distribution, and bacterial colonization of Transparent Exopolymeric Particles (TEP) were examined in two consecutive years during the spring diatom development throughout the water column of the deep meromictic Lake Pavin, France. TEP concentrations ranged from 1.9 to 13.4 x 105 particles l-1 and their distribution and size spectra indicated that these particles are the main factor in governing the transport of diatoms to the deep hypolimnion of the lake. The majority of TEP was colonized by bacteria that constituted 0.4-8.9% of total DAPI-stained bacteria. The intensity of bacterial colonization was strongly related to temperature and decreased with particle size. A more important colonization of small particles in the hypolimnion during thermal stratification suggested that bacterial colonisation also increased with the age of the particle. The abundance of heterotrophic nanoflagellates (HNF) was more significantly related to the density of particles than to the density of total bacteria and the intensity of bacterial colonization of TEP. Our results therefore suggest that TEP are a more important factor for HNF development than attached and free bacteria. We conclude that TEP are involved not only in sedimentation processes but also in the dynamics of bacteria and protozoa in freshwater pelagic environments

    The contribution of microorganisms and metazoans to mineral nutrition in bromeliads

    No full text
    One critical challenge for plants is to maintain an adequate nutrient supply under fluctuating environmental conditions. This is particularly true for epiphytic species that have limited or no access to the pedosphere and often live in harsh climates. Bromeliads have evolved key innovations such as epiphytism, water-absorbing leaf trichomes, tank habit and Crassulacean acid metabolism (CAM) photosynthesis that enable them to survive under various environmental conditions. Bromeliads encompass diverse ecological types that live on different substrates (they can be terrestrial, epilithic or epiphytic) and vary in their ability to retain water (they can be tank-forming or tankless) and photosynthetic pathway (i.e. C3 or CAM). In this review, we outline the nutritional modes and specializations that enable bromeliads to thrive in a wide range of nutrient-poor (mostly nitrogen-depleted) environments.Important FindingsBromeliads have evolved a great diversity of morphologies and functional adaptations leading to the existence of numerous nutritional modes. Focusing on species that have absorptive foliar trichomes, we review evidence that bromeliads have evolved multi-faceted nutritional strategies to respond to fluctuations in the supply of natural nitrogen (N). These plants have developed mutualistic associations with many different and functionally diverse terrestrial and aquatic microorganisms and metazoans that contribute substantially to their mineral nutrition and, thus, their fitness and survival. Bacterial and fungal microbiota-assisted N provisioning, protocarnivory, digestive mutualisms and myrmecotrophic pathways are the main strategies used by bromeliads to acquire nitrogen. The combination of different nutritional pathways in bromeliads represents an important adaptation enabling them to exploit nutrient-poor habitats. Nonetheless, as has been shown for several other vascular plants, multiple partners are involved in nutrient acquisition indicating that there have been convergent adaptations to nutrient scarcity. Finally, we point out some gaps in the current knowledge of bromeliad nutrition that offer fascinating research opportunities
    • …
    corecore