277 research outputs found

    Small and large intestine express a truncated Dab1 isoform that assembles in cell-cell junctions and co-localizes with proteins involved in endocytosis

    Get PDF
    Disabled-1 (Dab1) is an essential intracellular adaptor protein in the reelin pathway. Our previous studies in mice intestine showed that Dab1 transmits the reelin signal to cytosolic signalling pathways. Here, we determine the Dab1 isoform expressed in rodent small and large intestine, its subcellular location and co-localization with clathrin, caveolin-1 and N-Wasp. PCR and sequencing analysis reveal that rodent small and large intestine express a Dab1 isoform that misses three (Y198, Y200and Y220) of the five tyrosine phosphorylation sites present in brain Dab1 isoform (canonical) and contains nuclear localization and export signals. Western blot assays show that both, crypts, which shelter progenitor cells, and enterocytes express the same Dab1 isoform, suggesting that epithelial cell differentiation does not regulate intestinal generation of alternatively spliced Dab1 variants. They also reveal that the canonical and the intestinal Dab1 isoforms differ in their total degree of phosphorylation. Immunostaining assays show that in enterocytes Dab1 localizes at the apical and lateral membranes, apical vesicles, close to adherens junctions and desmosomes, as well as in the nucleus; co-localizes with clathrin and with N-Wasp but not with caveolin-1, and in Caco-2 cells Dab1 localizes at cell-to-cell junctions by a Ca2+-dependent process. In conclusion, the results indicate that in rodent intestine a truncated Dab1 variant transmits the reelin signal and may play a role in clathrin-mediated apical endocytosis and in the control of cell-to-cell junctions assembly. A function of intestinal Dab1 variant as a nucleocytoplasmic shuttling protein is also inferred from its sequence and nuclear location

    Solitary waves in the Nonlinear Dirac Equation

    Get PDF
    In the present work, we consider the existence, stability, and dynamics of solitary waves in the nonlinear Dirac equation. We start by introducing the Soler model of self-interacting spinors, and discuss its localized waveforms in one, two, and three spatial dimensions and the equations they satisfy. We present the associated explicit solutions in one dimension and numerically obtain their analogues in higher dimensions. The stability is subsequently discussed from a theoretical perspective and then complemented with numerical computations. Finally, the dynamics of the solutions is explored and compared to its non-relativistic analogue, which is the nonlinear Schr{\"o}dinger equation. A few special topics are also explored, including the discrete variant of the nonlinear Dirac equation and its solitary wave properties, as well as the PT-symmetric variant of the model

    Ampelisca lusitanica (Crustacea: Amphipoda): new species for the Atlantic coast of Morocco

    Get PDF
    Background This study reports for the first time the presence of the Lusitanian ampeliscid amphipod Ampelisca lusitanica Bellan-Santini & Marques, 1986 in the northwestern Atlantic coast of Morocco. Methods Specimens were collected in January 2015 from intertidal rock pools along the El Jadida shoreline associated with the brown algae Bifurcaria bifurcata and Sargassum muticum. Results Systematic description of the species is presented, as well as a discussion of its ecological and geographical distribution. Conclusion This new finding extends the geographical distribution from the Lusitanian (Europe) to the Mauritanian (Africa) region and increases knowledge of the ecology and the global distribution of A. lusitanica found, previously, only on Portuguese and Spanish coasts.info:eu-repo/semantics/publishedVersio

    Phenology of Scramble Polygyny in a Wild Population of Chrysolemid Beetles: The Opportunity for and the Strength of Sexual Selection

    Get PDF
    Recent debate has highlighted the importance of estimating both the strength of sexual selection on phenotypic traits, and the opportunity for sexual selection. We describe seasonal fluctuations in mating dynamics of Leptinotarsa undecimlineata (Coleoptera: Chrysomelidae). We compared several estimates of the opportunity for, and the strength of, sexual selection and male precopulatory competition over the reproductive season. First, using a null model, we suggest that the ratio between observed values of the opportunity for sexual selections and their expected value under random mating results in unbiased estimates of the actual nonrandom mating behavior of the population. Second, we found that estimates for the whole reproductive season often misrepresent the actual value at any given time period. Third, mating differentials on male size and mobility, frequency of male fighting and three estimates of the opportunity for sexual selection provide contrasting but complementary information. More intense sexual selection associated to male mobility, but not to male size, was observed in periods with high opportunity for sexual selection and high frequency of male fights. Fourth, based on parameters of spatial and temporal aggregation of female receptivity, we describe the mating system of L. undecimlineata as a scramble mating polygyny in which the opportunity for sexual selection varies widely throughout the season, but the strength of sexual selection on male size remains fairly weak, while male mobility inversely covaries with mating success. We suggest that different estimates for the opportunity for, and intensity of, sexual selection should be applied in order to discriminate how different behavioral and demographic factors shape the reproductive dynamic of populations

    Antimicrobial Peptides and Skin: A Paradigm of Translational Medicine

    Get PDF
    Antimicrobial peptides (AMPs) are small, cationic, amphiphilic peptides with broad-spectrum microbicidal activity against both bacteria and fungi. In mammals, AMPs form the first line of host defense against infections and generally play an important role as effector agents of the innate immune system. The AMP era was born more than 6 decades ago when the first cationic cyclic peptide antibiotics, namely polymyxins and tyrothricin, found their way into clinical use. Due to the good clinical experience in the treatment of, for example, infections of mucus membranes as well as the subsequent understanding of mode of action, AMPs are now considered for treatment of inflammatory skin diseases and for improving healing of infected wounds. Based on the preclinical findings, including pathobiochemistry and molecular medicine, targeted therapy strategies are developed and first results indicate that AMPs influence processes of diseased skin. Importantly, in contrast to other antibiotics, AMPs do not seem to propagate the development of antibiotic-resistant micro-organisms. Therefore, AMPs should be tested in clinical trials for their efficacy and tolerability in inflammatory skin diseases and chronic wounds. Apart from possible fields of application, these peptides appear suited as an example of the paradigm of translational medicine for skin diseases which is today seen as a `two-way road' - from bench to bedside and backwards from bedside to bench. Copyright (c) 2012 S. Karger AG, Base

    A metabolomics cell-based approach for anticipating and investigating drug-induced liver injury

    Get PDF
    In preclinical stages of drug development, anticipating potential adverse drug effects such as toxicity is an important issue for both saving resources and preventing public health risks. Current in vitro cytotoxicity tests are restricted by their predictive potential and their ability to provide mechanistic information. This study aimed to develop a metabolomic mass spectrometry-based approach for the detection and classification of drug-induced hepatotoxicity. To this end, the metabolite profiles of human derived hepatic cells (i.e., HepG2) exposed to different well-known hepatotoxic compounds acting through different mechanisms (i.e., oxidative stress, steatosis, phospholipidosis, and controls) were compared by multivariate data analysis, thus allowing us to decipher both common and mechanism-specific altered biochemical pathways. Briefly, oxidative stress damage markers were found in the three mechanisms, mainly showing altered levels of metabolites associated with glutathione and γ-glutamyl cycle. Phospholipidosis was characterized by a decreased lysophospholipids to phospholipids ratio, suggestive of phospholipid degradation inhibition. Whereas, steatosis led to impaired fatty acids β-oxidation and a subsequent increase in triacylglycerides synthesis. The characteristic metabolomic profiles were used to develop a predictive model aimed not only to discriminate between non-toxic and hepatotoxic drugs, but also to propose potential drug toxicity mechanism(s)

    CYLD regulates keratinocyte differentiation and skin cancer progression in humans

    Get PDF
    CYLD is a gene mutated in familial cylindromatosis and related diseases, leading to the development of skin appendages tumors. Although the deubiquitinase CYLD is a skin tumor suppressor, its role in skin physiology is unknown. Using skin organotypic cultures as experimental model to mimic human skin, we have found that CYLD acts as a regulator of epidermal differentiation in humans through the JNK signaling pathway. We have determined the requirement of CYLD for the maintenance of epidermal polarity, keratinocyte differentiation and apoptosis. We show that CYLD overexpression increases keratinocyte differentiation while CYLD loss of function impairs epidermal differentiation. In addition, we describe the important role of CYLD in the control of human non-melanoma skin cancer progression. Our results show the reversion of the malignancy of human squamous cell carcinomas that express increased levels of CYLD, while its functional inhibition enhances the aggressiveness of these tumors which progress toward spindle cell carcinomas. We have found that the mechanisms through which CYLD regulates skin cancer progression include the control of tumor differentiation, angiogenesis and cell survival. These findings of the role of CYLD in human skin cancer prognosis make our results relevant from a therapeutic point of view, and open new avenues for exploring novel cancer therapies
    corecore