39 research outputs found

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Asociación entre polimorfismos en los genes PNPLA3 y TM6SF2 y presencia de fibrosis en pacientes con infección crónica por virus hepatitis C

    No full text
    Hepatitis C virus (HCV) is a globally prevalent pathogen and a leading cause of death and morbidity. The most recent estimates of disease burden show an increase in seroprevalence over the last 15 years to 2.8%, equating to >185 million infections worldwide. Persistent hepatitis C infection is associated with the development of liver cirrhosis, hepatocellular cancer, liver failure and death. The magnitude of disease progression in chronic infection varies significantly among individuals. Several factors have been recognized as being associated with the progression of HCV-related liver fibrosis and with clinical outcomes. As liver fibrosis progression remains variable between individuals with similar environmental or virological risks, host genetic predispositions have been suggested as another critical determinant. The single nucleotide polymorphisms in Patatin-like phospholipase domain-containing 3 (PNPLA3) and Transmembrane 6 Superfamily Member 2 (TM6SF2) genes are genetic determinants of nonalcoholic fatty liver disease, in terms of inflammation and fibrosis. The possible action of the PNPLA3 and TM6SF2 polymorphisms on fibrosis development in chronic hepatis C is being studied, with controversial results

    Multispectral image analysis of glaciers and glacier lakes in the Chugach Mountains, Alaska

    No full text
    The Chugach Mountains contain the largest nonpolar alpine glaciers in the world and include a wide variety of glacier types: some are land terminating; some calve variously into tidewater, lakes, and rivers; some are heavily debris covered; some are surge-type, whereas others are neither debris covered nor surge type. Nearly all are retreating, thinning, or both, though some rare ones are advancing, and some are thickening at high elevations. To assist the further documentation of changes, we establish an inventory of glaciers in the eastern Chugach Mountains. Several case studies of diverse glacier types showcase remotesensing applications and are used to derive new knowledge of their current states and dynamical behavior. Several of these glaciers currently discharge into the Copper River and can be used to understand the processes governing glacier damming of large rivers. The Copper River, along with other major valley outlets from the Copper River Basin, was dammed several times by ice during the Pleistocene, forming a lake 10,000–20,000 km2 in area, called Glacial Lake Ahtna. Insights from the modern Childs, Miles, and Allen Glaciers—each of which fronts the Copper River—show that damming is not easily accomplished; direct encroachment, complete crossing, and successful damming require very low river discharge and probably introduction of abundant rock debris from a landslide onto the glacier. The last century has involved degradation of the Little Ice Age piedmont lobes of many valley glaciers in the Chugach Mountains and especially its Copper River corridor. These glaciers are generally losing over a meter per year of surface elevation. In another chapter highlight, we have found that crenulation and chevron folding of medial moraines does not require surging, as is commonly assumed; rather, the deformation can occur by flow diversion, without any surge activity, into ice-marginal lakes—a process we term a glacial aneurysm

    Advances in Concentration Gradient Generation Approaches in a Microfluidic Device for Toxicity Analysis

    No full text
    This systematic review aimed to analyze the development and functionality of microfluidic concentration gradient generators (CGGs) for toxicological evaluation of different biological organisms. We searched articles using the keywords: concentration gradient generator, toxicity, and microfluidic device. Only 33 of the 352 articles found were included and examined regarding the fabrication of the microdevices, the characteristics of the CGG, the biological model, and the desired results. The main fabrication method was soft lithography, using polydimethylsiloxane (PDMS) material (91%) and SU-8 as the mold (58.3%). New technologies were applied to minimize shear and bubble problems, reduce costs, and accelerate prototyping. The Christmas tree CGG design and its variations were the most reported in the studies, as well as the convective method of generation (61%). Biological models included bacteria and nematodes for antibiotic screening, microalgae for pollutant toxicity, tumor and normal cells for, primarily, chemotherapy screening, and Zebrafish embryos for drug and metal developmental toxicity. The toxic effects of each concentration generated were evaluated mostly with imaging and microscopy techniques. This study showed an advantage of CGGs over other techniques and their applicability for several biological models. Even with soft lithography, PDMS, and Christmas tree being more popular in their respective categories, current studies aim to apply new technologies and intricate architectures to improve testing effectiveness and reduce common microfluidics problems, allowing for high applicability of toxicity tests in different medical and environmental models

    Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus

    Get PDF
    Monozygotic (MZ) twins are partially concordant for most complex diseases, including autoimmune disorders. Whereas phenotypic concordance can be used to study heritability, discordance suggests the role of non-genetic factors. In autoimmune diseases, environmentally driven epigenetic changes are thought to contribute to their etiology. Here we report the first high-throughput and candidate sequence analyses of DNA methylation to investigate discordance for autoimmune disease in twins. We used a cohort of MZ twins discordant for three diseases whose clinical signs often overlap: systemic lupus erythematosus (SLE), rheumatoid arthritis, and dermatomyositis. Only MZ twins discordant for SLE featured widespread changes in the DNA methylation status of a significant number of genes. Gene ontology analysis revealed enrichment in categories associated with immune function. Individual analysis confirmed the existence of DNA methylation and expression changes in genes relevant to SLE pathogenesis. These changes occurred in parallel with a global decrease in the 5-methylcytosine content that was concomitantly accompanied with changes in DNA methylation and expression levels of ribosomal RNA genes, although no changes in repetitive sequences were found. Our findings not only identify potentially relevant DNA methylation markers for the clinical characterization of SLE patients but also support the notion that epigenetic changes may be critical in the clinical manifestations of autoimmune disease

    Molecular genetics of berry colour variation in table grape

    No full text
    The genetics and biochemistry of anthocyanins and flavonol biosynthesis and their role in plant organ pigmentation is well established in model species. However, the genetic basis of colour variation is species specific and understanding this variation is very relevant in many fruit and flower crop species. Among grape cultivars, there is a wide genetic variation for berry colour ranging from yellow-green ("white" cultivars) to dark blue berries. Berry colour results from the synthesis and accumulation of anthocyanins in the berry skin, which in plants is commonly regulated by transcription factors belonging to the MYB and bHLH families. In this work, we aimed to identify the major genetic determinants of berry colour variation in a large collection of table grape cultivars and somatic variants. The genetic analyses of berry colour in a few grape segregating progenies had previously identified a single locus on linkage group 2 responsible for colour variation. Furthermore, somatic variation for berry skin colour in cultivar Italia had been associated with the presence of a Gret1 retrotransposon in the promoter region of VvmybA1, a Myb gene whose expression is associated to skin colouration. The results show that VvmybA1 is the gene underlying the mapped locus controlling berry colour in grape. Additionally, the molecular analyses indicate that genetic and somatic berry colour variation can be associated to molecular variation at VvmybA1 in more than 95% of the analyzed cultivars. Thus, VvmybA1 is a major determinant of berry colour variation in table grape and its instability is the major cause of somatic variation for this trait. © Springer-Verlag 2006
    corecore