14 research outputs found

    The Ser82 RAGE variant affects lung function and serum RAGE in smokers and sRAGE production in vitro

    Get PDF
    Introduction: Genome-Wide Association Studies have identified associations between lung function measures and Chronic Obstructive Pulmonary Disease (COPD) and chromosome region 6p21 containing the gene for the Advanced Glycation End Product Receptor (AGER, encoding RAGE). We aimed to (i) characterise RAGE expression in the lung, (ii) identify AGER transcripts, (iii) ascertain if SNP rs2070600 (Gly82Ser C/T) is associated with lung function and serum sRAGE levels and (iv) identify whether the Gly82Ser variant is functionally important in altering sRAGE levels in an airway epithelial cell model. Methods: Immunohistochemistry was used to identify RAGE protein expression in 26 human tissues and qPCR was used to quantify AGER mRNA in lung cells. Gene expression array data was used to identify AGER expression during lung development in 38 fetal lung samples. RNA-Seq was used to identify AGER transcripts in lung cells. sRAGE levels were assessed in cells and patient serum by ELISA. BEAS2B-R1 cells were transfected to overexpress RAGE protein with either the Gly82 or Ser82 variant and sRAGE levels identified. Results: Immunohistochemical assessment of 6 adult lung samples identified high RAGE expression in the alveoli of healthy adults and individuals with COPD. AGER/RAGE expression increased across developmental stages in human fetal lung at both the mRNA (38 samples) and protein levels (20 samples). Extensive AGER splicing was identified. The rs2070600T (Ser82) allele is associated with higher FEV1, FEV1/FVC and lower serum sRAGE levels in UK smokers. Using an airway epithelium model overexpressing the Gly82 or Ser82 variants we found that HMGB1 activation of the RAGE-Ser82 receptor results in lower sRAGE production. Conclusions: This study provides new information regarding the expression profile and potential role of RAGE in the human lung and shows a functional role of the Gly82Ser variant. These findings advance our understanding of the potential mechanisms underlying COPD particularly for carriers of this AGER polymorphism

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    The COMET Handbook: version 1.0

    Full text link

    Elastin in asthma

    No full text
    Extracellular matrix is generally increased in asthma, causing thickening of the airways which may either increase or decrease airway responsiveness, depending on the mechanical requirements of the deposited matrix. However, in vitro studies have shown that the altered extracellular matrix produced by asthmatic airway smooth muscle cells is able to induce increased proliferation of non-asthmatic smooth muscle cells, which is a process believed to contribute to airway hyper-responsiveness in asthma. Elastin is an extracellular matrix protein that is altered in asthmatic airways, but there has been no systematic investigation of the functional effect of these changes. This review reveals divergent reports of the state of elastin in the airway wall in asthma. In some layers of the airway it has been described as increased, decreased and/or fragmented, or unchanged. There is also considerable evidence for an imbalance of matrix metalloproteinases, which degrade elastin, and their respective inhibitors the tissue inhibitors of metalloproteinases, which collectively help to explain observations of both increased elastin and elastin fragments. A loss of lung elastic recoil in asthma suggests a mechanical role for disordered elastin in the aetiology of the disease, but extensive studies of elastin in other tissues show that elastin fragments elicit cellular effects such as increased proliferation and inflammation. This review summarises the current understanding of the role of elastin in the asthmatic airway

    Thrombin Generation and Cancer: Contributors and Consequences

    No full text
    The high occurrence of cancer-associated thrombosis is associated with elevated thrombin generation. Tumour cells increase the potential for thrombin generation both directly, through the expression and release of procoagulant factors, and indirectly, through signals that activate other cell types (including platelets, leukocytes and erythrocytes). Furthermore, cancer treatments can worsen these effects. Coagulation factors, including tissue factor, and inhibitors of coagulation are altered and extracellular vesicles (EVs), which can promote and support thrombin generation, are released by tumour and other cells. Some phosphatidylserine-expressing platelet subsets and platelet-derived EVs provide the surface required for the assembly of coagulation factors essential for thrombin generation in vivo. This review will explore the causes of increased thrombin production in cancer, and the availability and utility of tests and biomarkers. Increased thrombin production not only increases blood coagulation, but also promotes tumour growth and metastasis and as a consequence, thrombin and its contributors present opportunities for treatment of cancer-associated thrombosis and cancer itself

    Natural history of hypercoagulability in patients undergoing coronary revascularization and effect of preoperative myocardial infarction

    Get PDF
    Objectives: The balance between hyper- and hypocoagulable states is critical after coronary artery surgery both with (coronary artery bypass grafting [CABG]) and without (off-pump coronary artery bypass [OPCAB]) cardiopulmonary bypass to prevent thrombotic or bleeding complications. We aimed to quantify novel parameters of coagulation, fibrinolysis, and overall hemostasi

    Off-pump coronary artery bypass surgery induces prolonged alterations to host neutrophil physiology

    No full text
    Persistent alteration to host polymorphonuclear cell (PMN) physiology has been demonstrated after cardiac surgery performed with cardiopulmonary bypass (CPB). However, to date, PMN physiology and function beyond the first 24 h have not been investigated after cardiac surgery performed without CPB (off-pump coronary artery bypass grafting [OPCAB]). Blood samples of 15 patients were collected preoperatively and on days 1, 3, and 5 after OPCAB. Expression of CD11b, CD18, CBRM1/5, and CD62L were assessed by flow cytometry under resting conditions and after stimulation with formyl methionyl-leucyl-phenylalanine (fMLF), and respiratory burst activity was also measured. Under resting conditions, PMN CD11b, CBRM1/5, and CD62L expressions were minimally altered by surgery. Compared with the response of preoperative PMNs, PMNs assayed on days 3 and 5 after OPCAB demonstrated a significantly blunted increase in the expression of CD11b and CBRM1/5 after fMLF, significantly diminished shedding of CD62L in response to platelet-activating factor and fMLF, and diminished superoxide production after stimulation on day 3. The alteration of PMN function after OPCAB implies that cardiac surgical trauma without CPB directly modulates host PMN physiology

    Remote ischemic preconditioning inhibits platelet activation in coronary artery disease patients receiving dual antiplatelet therapy: A randomized trial

    No full text
    Objectives: We investigated whether remote ischemic preconditioning (RIPC) inhibits agonist-induced conformational activation of platelet αIIbβ3 in patients with coronary artery disease already receiving conventional antiplatelet therapy. Patients/Methods: Consecutive patients with angiographically confirmed coronary artery disease were randomized to RIPC or sham treatment. Venous blood was collected before and immediately after RIPC/sham. Platelet aggregometry (ADP, arachidonic acid) and whole blood platelet flow cytometry was performed for CD62P, CD63, active αIIbβ3 (PAC-1 binding) before and after stimulation with ADP, thrombin ± collagen, or PAR-1 thrombin receptor agonist. Results: Patients (25 RIPC, 23 sham) were well matched, 83% male, age (mean ± standard deviation) 63.3 ± 13.2 years, 95% aspirin, 81% P2Y12 inhibitor. RIPC did not affect platelet aggregation, nor agonist-induced expression of CD62P, but selectively and significantly decreased αIIbβ3 activation after stimulation with either PAR-1 agonist peptide or the combination of thrombin + collagen, but not after ADP nor thrombin alone. The effect of RIPC on platelet αIIbβ3 activation was evident in patients receiving both aspirin and P2Y12 inhibitor, and was not associated with an increase in vasodilator-stimulated phosphoprotein phosphorylation. Conclusions: Remote ischemic preconditioning inhibits conformational activation of platelet αIIbβ3 in response to exposure to thrombin and collagen in patients with coronary artery disease receiving dual antiplatelet therapy. These findings indicate agonist-specific inhibition of platelet activation by RIPC in coronary artery disease that is not obviated by the prior use of P2Y12 inhibitors.JKL was supported by an NHMRC/National Heart Foundation of Australia Postgraduate Scholarship (1094384)
    corecore