11 research outputs found

    Metre-scale damage zone characterization using S-coda waves from active ultrasonic transmission measurements in the STIMTEC project, URL Reiche Zeche, Germany

    Get PDF
    Studies of controlled hydraulic stimulation experiments with active and passive seismic monitoring conducted in Underground Research Laboratories (URLs) benefit from specific knowledge of hydraulic parameters, close by microseismic monitoring revealing structural details of the rock mass, and detailed evolution of seismicity in response to injection operations. Microseismic monitoring is commonly used to characterize a stimulated reservoir volume, for example, in terms of damage evolution of the rock mass. Since seismic attenuation is affected by damage of the rock volume, active seismic sources covering sizes from the centimetre to decimetre scale may help us to investigate space–time varying attenuation properties in a reservoir. This may allow us to monitor damage evolution of the stimulated rock volume in more detail, also since active seismic sources produce stronger signals leading to a broader frequency range that can be analysed compared to passive seismic signals. Within the STIMTEC project in the URL Reiche Zeche (URL-RZ) in Freiberg (Germany), more than 300 active Ultrasonic Transmission (UT) measurements were performed before and after hydraulic stimulations in two boreholes in the targeted rock volume, an anisotropic metamorphic gneiss. The signal-frequency content ranges between 1 and 60 kHz. Assuming scattering attenuation to dominate over intrinsic attenuation, we here apply the single isotropic scattering model. S-coda waves of 88 spatially representative UT measurements are used to estimate the coda quality factor (QC). We obtain stable QC estimates for centre frequencies of octave-width frequency bands between 3 and 21 kHz. We group neighbouring UT measurements to stabilize the observations and form eight UT groups in total, covering different depth intervals in three boreholes and four different time periods to investigate scattering attenuation changes in a spatiotemporal manner. Our final mean QC (⁠QC¯¯¯¯¯¯¯⁠) estimates show characteristic frequency-dependence as observed at the field scale in geological reservoirs. We find temporal variations of QC are strongly connected to hydraulic stimulation, and these variations are more significant than those resolved from velocity changes. QC¯¯¯¯¯¯¯ estimates at frequencies above 15 kHz indicate healing of injection-induced small-scale fractures during a two-months post-stimulation phase. Larger fractures, mostly sampled by lower frequencies (<15 kHz), seem to be more persistent with time (over 15 months). We observe spatial differences of QC¯¯¯¯¯¯¯ values near the mine galleries (driftway and vein drift) and relate these observations to different extents and characteristics of the galleries’ excavation damage zones. Our results further support previous assumptions based on borehole televiewer logs and mapped structures of an existing fault with larger damage zone that crosses the stimulated rock volume NW-SE between the galleries. We conclude that the coda analysis of active UT measurements complements established imaging methods used during experiments in URLs. In particular, coda analysis is a powerful tool for the detection of damage zones and for monitoring local fracture networks with immediate application for imaging georeservoirs considered for exploitation or underground storage of gases and liquids

    Petrophysical, Geochemical, and Hydrological Evidence for Extensive Fracture-Mediated Fluid and Heat Transport in the Alpine Fault's Hanging-Wall Damage Zone

    Get PDF
    International audienceFault rock assemblages reflect interaction between deformation, stress, temperature, fluid, and chemical regimes on distinct spatial and temporal scales at various positions in the crust. Here we interpret measurements made in the hanging‐wall of the Alpine Fault during the second stage of the Deep Fault Drilling Project (DFDP‐2). We present observational evidence for extensive fracturing and high hanging‐wall hydraulic conductivity (∌10−9 to 10−7 m/s, corresponding to permeability of ∌10−16 to 10−14 m2) extending several hundred meters from the fault's principal slip zone. Mud losses, gas chemistry anomalies, and petrophysical data indicate that a subset of fractures intersected by the borehole are capable of transmitting fluid volumes of several cubic meters on time scales of hours. DFDP‐2 observations and other data suggest that this hydrogeologically active portion of the fault zone in the hanging‐wall is several kilometers wide in the uppermost crust. This finding is consistent with numerical models of earthquake rupture and off‐fault damage. We conclude that the mechanically and hydrogeologically active part of the Alpine Fault is a more dynamic and extensive feature than commonly described in models based on exhumed faults. We propose that the hydrogeologically active damage zone of the Alpine Fault and other large active faults in areas of high topographic relief can be subdivided into an inner zone in which damage is controlled principally by earthquake rupture processes and an outer zone in which damage reflects coseismic shaking, strain accumulation and release on interseismic timescales, and inherited fracturing related to exhumation

    Bedrock geology of DFDP-2B, central Alpine Fault, New Zealand

    Get PDF
    <p>During the second phase of the Alpine Fault, Deep Fault Drilling Project (DFDP) in the Whataroa River, South Westland, New Zealand, bedrock was encountered in the DFDP-2B borehole from 238.5–893.2 m Measured Depth (MD). Continuous sampling and meso- to microscale characterisation of whole rock cuttings established that, in sequence, the borehole sampled amphibolite facies, Torlesse Composite Terrane-derived schists, protomylonites and mylonites, terminating 200–400 m above an Alpine Fault Principal Slip Zone (PSZ) with a maximum dip of 62°. The most diagnostic structural features of increasing PSZ proximity were the occurrence of shear bands and reduction in mean quartz grain sizes. A change in composition to greater mica:quartz + feldspar, most markedly below c. 700 m MD, is inferred to result from either heterogeneous sampling or a change in lithology related to alteration. Major oxide variations suggest the fault-proximal Alpine Fault alteration zone, as previously defined in DFDP-1 core, was not sampled.</p

    Seismic monitoring of the STIMTEC hydraulic stimulation experiment in anisotropic metamorphic gneiss

    No full text
    In 2018 and 2019, we performed STIMulation tests with characterising periodic pumping tests and high-resolution seismic monitoring for improving prognosis models and real-time monitoring TEChnologies for the creation of hydraulic conduits in crystalline rocks (STIMTEC). The STIMTEC underground research laboratory is located at 130 m depth in the Reiche Zeche mine in Freiberg, Germany. The experiment was designed to investigate the rock damage resulting from hydraulic stimulation and to link seismic activity and enhancement of hydraulic properties in strongly foliated metamorphic gneiss. We present results from active and passive seismic monitoring prior to and during hydraulic stimulations. We characterise the structural anisotropy and heterogeneity of the reservoir rocks at the STIMTEC site and the induced high-frequency (>1 kHz) acoustic emission (AE) activity, associated with brittle deformation at the centimetre-to-decimetre scale. We derived the best velocity model per recording station from over 300 active ultrasonic transmission measurements for high-accuracy AE event location. The average P-wave anisotropy is 12 %, in agreement with values derived from laboratory tests on core material. We use a 16-station seismic monitoring network comprising AE sensors, accelerometers, one broadband sensor and one AE hydrophone. All instrumentation was removable, providing us with the flexibility to use existing boreholes for multiple purposes. This approach also allowed for optimising the (near)-real-time passive monitoring system during the experiment. To locate AE events, we tested the effect of different velocity models and inferred their location accuracy. Based on the known active ultrasonic transmission measurement points, we obtained an average relocation error of 0.26±0.06 m where the AE events occurred using a transverse isotropic velocity model per station. The uncertainty resulting from using a simplified velocity model increased to 0.5–2.6 m, depending on whether anisotropy was considered or not. Structural heterogeneity overprints anisotropy of the host rock and has a significant influence on velocity and attenuation, with up to 4 % and up to 50 % decrease on velocity and wave amplitude, respectively. Significant variations in seismic responses to stimulation were observed ranging from abundant AE events (several thousand per stimulated interval) to no activity with breakdown pressure values ranging between 6.4 and 15.6 MPa. Low-frequency seismic signals with varying amplitudes were observed for all stimulated intervals that are more correlated with the injection flow rate rather than the pressure curve. We discuss the observations from STIMTEC in context of similar experiments performed in underground research facilities to highlight the effect of small-scale rock, stress and structural heterogeneity and/or anisotropy observed at the decametre scale. The reservoir complexity at this scale supports our conclusion that field-scale experiments benefit from high-sensitivity, wide-bandwidth instrumentation and flexible monitoring approaches to adapt to unexpected challenges during all stages of the experiment.ISSN:1869-9510ISSN:1869-952

    Extreme hydrothermal conditions at an active plate-bounding fault

    No full text
    International audienceTemperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes1. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre2, 3. At temperatures above 300–450 degrees Celsius, usually found at depths greater than 10–15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional–mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades4, 5. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults

    Bedrock geology of DFDP-2B, central Alpine Fault, New Zealand

    No full text
    During the second phase of the Alpine Fault, Deep Fault Drilling Project (DFDP) in the Whataroa River, South Westland, New Zealand, bedrock was encountered in the DFDP-2B borehole from 238.5–893.2 m Measured Depth (MD). Continuous sampling and meso- to microscale characterisation of whole rock cuttings established that, in sequence, the borehole sampled amphibolite facies, Torlesse Composite Terrane-derived schists, protomylonites and mylonites, terminating 200–400 m above an Alpine Fault Principal Slip Zone (PSZ) with a maximum dip of 62°. The most diagnostic structural features of increasing PSZ proximity were the occurrence of shear bands and reduction in mean quartz grain sizes. A change in composition to greater mica:quartz + feldspar, most markedly below c. 700 m MD, is inferred to result from either heterogeneous sampling or a change in lithology related to alteration. Major oxide variations suggest the fault-proximal Alpine Fault alteration zone, as previously defined in DFDP-1 core, was not sampled

    Bedrock geology of DFDP-2B, central Alpine Fault, New Zealand

    No full text
    During the second phase of the Alpine Fault, Deep Fault Drilling Project (DFDP) in the Whataroa River, South Westland, New Zealand, bedrock was encountered in the DFDP-2B borehole from 238.5–893.2 m Measured Depth (MD). Continuous sampling and meso- to microscale characterisation of whole rock cuttings established that, in sequence, the borehole sampled amphibolite facies, Torlesse Composite Terrane-derived schists, protomylonites and mylonites, terminating 200–400 m above an Alpine Fault Principal Slip Zone (PSZ) with a maximum dip of 62°. The most diagnostic structural features of increasing PSZ proximity were the occurrence of shear bands and reduction in mean quartz grain sizes. A change in composition to greater mica:quartz + feldspar, most markedly below c. 700 m MD, is inferred to result from either heterogeneous sampling or a change in lithology related to alteration. Major oxide variations suggest the fault-proximal Alpine Fault alteration zone, as previously defined in DFDP-1 core, was not sampled

    Extreme hydrothermal conditions at an active plate-bounding fault

    No full text
    Temperature and fluid pressure conditions control rock deformation and mineralization on geological faults, and hence the distribution of earthquakes. Typical intraplate continental crust has hydrostatic fluid pressure and a near-surface thermal gradient of 31 ± 15 degrees Celsius per kilometre. At temperatures above 300-450 degrees Celsius, usually found at depths greater than 10-15 kilometres, the intra-crystalline plasticity of quartz and feldspar relieves stress by aseismic creep and earthquakes are infrequent. Hydrothermal conditions control the stability of mineral phases and hence frictional-mechanical processes associated with earthquake rupture cycles, but there are few temperature and fluid pressure data from active plate-bounding faults. Here we report results from a borehole drilled into the upper part of the Alpine Fault, which is late in its cycle of stress accumulation and expected to rupture in a magnitude 8 earthquake in the coming decades. The borehole (depth 893 metres) revealed a pore fluid pressure gradient exceeding 9 ± 1 per cent above hydrostatic levels and an average geothermal gradient of 125 ± 55 degrees Celsius per kilometre within the hanging wall of the fault. These extreme hydrothermal conditions result from rapid fault movement, which transports rock and heat from depth, and topographically driven fluid movement that concentrates heat into valleys. Shear heating may occur within the fault but is not required to explain our observations. Our data and models show that highly anomalous fluid pressure and temperature gradients in the upper part of the seismogenic zone can be created by positive feedbacks between processes of fault slip, rock fracturing and alteration, and landscape development at plate-bounding faults
    corecore