6,657 research outputs found

    Increased H2_2CO production in the outer disk around HD 163296

    Get PDF
    Three formaldehyde lines were observed (H2_2CO 303_{03}--202_{02}, H2_2CO 322_{22}--221_{21}, and H2_2CO 321_{21}--220_{20}) in the protoplanetary disk around the Herbig Ae star HD 163296 with ALMA at 0.5 arcsecond (60 AU) spatial resolution. H2_2CO 303_{03}--202_{02} was readily detected via imaging, while the weaker H2_2CO 322_{22}--221_{21} and H2_2CO 321_{21}--220_{20} lines required matched filter analysis to detect. H2_2CO is present throughout most of the gaseous disk, extending out to 550 AU. An apparent 50 AU inner radius of the H2_2CO emission is likely caused by an optically thick dust continuum. The H2_2CO radial intensity profile shows a peak at 100 AU and a secondary bump at around 300 AU, suggesting increased production in the outer disk. Different parameterizations of the H2_2CO abundance were compared to the observed visibilities with χ2\chi^2 minimization, using either a characteristic temperature, a characteristic radius or a radial power law index to describe the H2_2CO chemistry. Similar models were applied to ALMA Science Verification data of C18^{18}O. In all modeling scenarios, fits to the H2_2CO data show an increased abundance in the outer disk. The overall best-fit H2_2CO model shows a factor of two enhancement beyond a radius of 270±\pm20 AU, with an inner abundance of 2 ⁣ ⁣5×10122\!-\!5 \times 10^{-12}. The H2_2CO emitting region has a lower limit on the kinetic temperature of T>20T > 20 K. The C18^{18}O modeling suggests an order of magnitude depletion in the outer disk and an abundance of 4 ⁣ ⁣12×1084\!-\!12 \times 10^{-8} in the inner disk. The increase in H2_2CO outer disk emission could be a result of hydrogenation of CO ices on dust grains that are then sublimated via thermal desorption or UV photodesorption, or more efficient gas-phase production beyond about 300 AU if CO is photodisocciated in this region

    Kinematics of Nearby Subdwarf Stars

    Full text link
    We present an analysis of the space motions of 742 subdwarf stars based on the sample of Carney et al. (1994, CLLA). Hipparcos parallaxes, TYC2+HIP proper motions and Tycho2 proper motions were combined with radial velocities and metallicities from CLLA. The kinematical behavior is discussed in particular in relation to their metallicities. The majority of these sample stars have metal abundances of [Fe/H] >-1 and represent the thick disk population. The halo component, with [Fe/H] <-1.6, is characterized by a low mean rotation velocity and a radially elongated velocity ellipsoid. In the intermediate metallicity range (-1.6 < [Fe/H] <-1), we find a significant number of subdwarfs with disklike kinematics. We interpret this population of stars as a metal-weak thick disk population.Comment: 6 pages, 7 figures, accepted by Astronomy & Astrophysic

    Rotational velocities of the giants in symbiotic stars: III. Evidence of fast rotation in S-type symbiotics

    Full text link
    We have measured the projected rotational velocities (vsini) in a number of symbiotic stars and M giants using high resolution spectroscopic observations. On the basis of our measurements and data from the literature, we compare the rotation of mass-donors in symbiotics with vsini of field giants and find that: (1) the K giants in S-type symbiotics rotate at vsini>4.5 km/s, which is 2-4 times faster than the field K giants; (2) the M giants in S-type symbiotics rotate on average 1.5 times faster than the field M giants. Statistical tests show that these differences are highly significant: p-value < 0.001 in the spectral type bins K2III-K5III, M0III-M6III, and M2III-M5III; (3) our new observations of D'-type symbiotics also confirm that they are fast rotators. As a result of the rapid rotation, the cool giants in symbiotics should have 3-30 times larger mass loss rates. Our results suggest also that bipolar ejections in symbiotics seem to happen in objects where the mass donors rotate faster than the orbital period. All spectra used in our series of papers can be obtained upon request from the authors.Comment: MNRAS (accepted), 7 pages, 5 figure

    Speckle Interferometry of Metal-Poor Stars in the Solar Neighborhood. I

    Full text link
    We report the results of speckle-interferometric observations of 109 high proper-motion metal-poor stars made with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. We resolve eight objects -- G102-20, G191-55, BD+19^\circ~1185A, G89-14, G87-45, G87-47, G111-38, and G114-25 -- into individual components and we are the first to astrometrically resolve seven of these stars. New resolved systems included two triple (G111-38, G87-47) and one quadruple (G89-14) star. The ratio of single-to-binary-to-triple-to-quadruple systems among the stars of our sample is equal to 71:28:6:1.Comment: 8 pages, 4 figures, accepted to Astrophysical Bulleti

    Knowledge, Attitudes, and Interactions with Chaplains and Nursing Northwell Health Outcomes: A Survey Study

    Get PDF
    © 2020, Springer Science+Business Media, LLC, part of Springer Nature. We conducted a cross-sectional survey of nursing Northwell Health (n = 51) in an academic hospital finding a significant inverse relationship between the frequency of chaplaincy interaction and perceived stress (r = − 0.27, p = 0.05). We also found a significant positive relationship between rated importance of having a chaplain at the hospital and secondary trauma (r = 0.30, p = 0.03). There was a significant positive relationship between religiosity and rated importance for having a chaplain (r = 0.30, p = 0.03) and rated helpfulness of chaplains (r = 0.32, p = 0.02). Similarly, there was a significant positive relationship between spirituality and average length of conversations with a chaplain, rated importance for having a chaplain, and helpfulness of chaplains (r = 0.32, p = 0.03; r = 0.44, p = 0.001; and r = 0.52, p = 0.0001, respectively). Interaction with chaplains is associated with decreased employee perceived stress for nursing Northwell Health who provide care for severely ill patients

    An Overview of the Rotational Behavior of Metal--Poor Stars

    Full text link
    The present paper describes the behavior of the rotational velocity in metal--poor stars ([Fe/H]<-0.5 dex) in different evolutionary stages, based on Vsini values from the literature. Our sample is comprised of stars in the field and some Galactic globular clusters, including stars on the main sequence, the red giant branch (RGB), and the horizontal branch (HB). The metal--poor stars are, mainly, slow rotators, and their Vsini distribution along the HR diagram is quite homogeneous. Nevertheless, a few moderate to high values of Vsini are found in stars located on the main sequence and on the HB. We show that the overall distribution of Vsini values is basically independent of metallicity for the stars in our sample. In particular, the fast-rotating main sequence stars in our sample present similar rotation rates as their metal-rich counterparts, suggesting that some of them may actually be fairly young, in spite of their low metallicity, or else that at least some of them would be better classified as blue straggler stars. We do not find significant evidence of evolution in Vsini values as a function of position on the RGB; in particular, we do not confirm previous suggestions that stars close to the RGB tip rotate faster than their less evolved counterparts. While the presence of fast rotators among moderately cool blue HB stars has been suggested to be due to angular momentum transport from a stellar core that has retained significant angular momentum during its prior evolution, we find that any such transport mechanisms must likely operate very fast as the star arrives on the zero-age HB (ZAHB), since we do not find a link between evolution off the ZAHB and Vsini values. We present an extensive tabulation of all quantities discussed in this paper, including rotation velocities, temperatures, gravitieComment: 22 pages, 10 figure

    How to detect high-performing individuals and groups: Decision similarity predicts accuracy

    Get PDF
    Distinguishing between high- and low-performing individuals and groups is of prime importance in a wide range of high-stakes contexts. While this is straightforward when accurate records of past performance exist, these records are unavailable in most real-world contexts. Focusing on the class of binary decision problems, we use a combined theoretical and empirical approach to develop and test a approach to this important problem. First, we use a general mathematical argument and numerical simulations to show that the similarity of an individual's decisions to others is a powerful predictor of that individual's decision accuracy. Second, testing this prediction with several large datasets on breast and skin cancer diagnostics, geopolitical forecasting, and a general knowledge task, we find that decision similarity robustly permits the identification of high-performing individuals and groups. Our findings offer a simple, yet broadly applicable, heuristic for improving real-world decision-making systems

    Halothane hepatitis with renal failure treated with hemodialysis and exchange transfusion

    Get PDF
    A 38-year-old white female, hepatitis B antigen negative, developed fluminating hepatic failure associated with oliguria and severe azotemia after two halothane anesthesia and without exposure to other hepatotoxic drugs or blood transfusions. She was treated with multiple hemodialysis and exchange blood transfusion. The combined treatment corrected the uremic abnormalities and improved her level of consciousness. The liver and kidney function gradually improved, and she made a complete recovery, the first recorded with hepatic and renal failure under these post-anesthetic conditions. Further evaluation of this combined treatment used for this patient is warranted. © 1974 The Japan Surgical Society
    corecore