60 research outputs found

    Diapause as escape strategy to exposure to toxicants: response of Brachionus calyciforus to arsenic

    Get PDF
    Invertebrate organisms commonly respond to environmental fluctuation by entering diapause. Production of diapause in monogonont rotifers involves a previous switch from asexual to partial sexual reproduction. Although zooplankton have been used in ecotoxicological assays, often their true vulnerability to toxicants is underestimated by not incorporating the sexual phase. We experimentally analyzed traits involved in sexual reproduction and diapause in the cyclically parthenogenetic freshwater rotifer, Brachionus calyciflorus, exposed to arsenic, a metalloid naturally found in high concentrations in desert zones, focusing on the effectiveness of diapause as an escape response in the face of an adverse condition. Addition of sublethal concentrations of arsenic modified the pattern of diapause observed in the rotifer: investment in diapause with arsenic addition peaked earlier and higher than in non-toxicant conditions, which suggests that sexual investment could be enhanced in highly stressed environmental conditions by increased responsiveness to stimulation. Nevertheless, eggs produced in large amount with arsenic, were mostly low quality, and healthy-looking eggs had lower hatching success, therefore it is unclear whether this pattern is optimum in an environment with arsenic, or if rather arsenic presence in water bodies disturbs the optimal allocation of offspring entering diapause. We observed high accumulation of arsenic in organisms exposed to constant concentration after several generations, which suggests that arsenic may be accumulated transgenerationally. The sexual phase in rotifers may be more sensitive to environmental conditions than the asexual one, therefore diapause attributes should be considered in ecotoxicological assessment because of its ecological and evolutionary implications on lakes biodiversity

    Cut-offs and response criteria for the Hospital Universitario la Princesa Index (HUPI) and their comparison to widely-used indices of disease activity in rheumatoid arthritis

    Get PDF
    Objective To estimate cut-off points and to establish response criteria for the Hospital Universitario La Princesa Index (HUPI) in patients with chronic polyarthritis. Methods Two cohorts, one of early arthritis (Princesa Early Arthritis Register Longitudinal PEARL] study) and other of long-term rheumatoid arthritis (Estudio de la Morbilidad y ExpresiĂłn ClĂ­nica de la Artritis Reumatoide EMECAR]) including altogether 1200 patients were used to determine cut-off values for remission, and for low, moderate and high activity through receiver operating curve (ROC) analysis. The areas under ROC (AUC) were compared to those of validated indexes (SDAI, CDAI, DAS28). ROC analysis was also applied to establish minimal and relevant clinical improvement for HUPI. Results The best cut-off points for HUPI are 2, 5 and 9, classifying RA activity as remission if =2, low disease activity if >2 and =5), moderate if >5 and <9 and high if =9. HUPI''s AUC to discriminate between low-moderate activity was 0.909 and between moderate-high activity 0.887. DAS28''s AUCs were 0.887 and 0.846, respectively; both indices had higher accuracy than SDAI (AUCs: 0.832 and 0.756) and CDAI (AUCs: 0.789 and 0.728). HUPI discriminates remission better than DAS28-ESR in early arthritis, but similarly to SDAI. The HUPI cut-off for minimal clinical improvement was established at 2 and for relevant clinical improvement at 4. Response criteria were established based on these cut-off values. Conclusions The cut-offs proposed for HUPI perform adequately in patients with either early or long term arthritis

    Determinants of enhanced vulnerability to COVID-19 in UK cancer patients: a European Study

    Get PDF
    Background: Despite high contagiousness and rapid spread, SARS-CoV-2 has led to heterogeneous outcomes across affected nations. Within Europe, the United Kingdom (UK) is the most severely affected country, with a death toll in excess of 100.000 as of January 2021. We aimed to compare the national impact of COVID-19 on the risk of death in UK cancer patients versus those in continental Europe (EU). / Methods: We performed a retrospective analysis of the OnCovid study database, a European registry of cancer patients consecutively diagnosed with COVID-19 in 27 centres from February 27 to September 10, 2020. We analysed case fatality rates and risk of death at 30 days and 6 months stratified by region of origin (UK versus EU). We compared patient characteristics at baseline, including oncological and COVID-19 specific therapy across UK and EU cohorts and evaluated the association of these factors with the risk adverse outcome in multivariable Cox regression models. / Findings: Compared to EU (n=924), UK patients (n=468) were characterised by higher case fatality rates (40.38% versus 26.5%, p<0.0001), higher risk of death at 30 days (hazard ratio, HR 1.64 [95%CI 1.36-1.99]) and 6 months after COVID-19 diagnosis (47.64% versus 33.33%, p<0.0001, HR 1.59 [95%CI 1.33-1.88]). UK patients were more often males, of older age and more co-morbid than EU counterparts (p<0.01). Receipt of anticancer therapy was lower in UK versus EU patients (p<0.001). Despite equal proportions of complicated COVID-19, rates of intensive care admission and use of mechanical ventilation, UK cancer patients were less likely to receive anti-COVID-19 therapies including corticosteroids, anti-virals and interleukin-6 antagonists (p<0.0001). Multivariable analyses adjusted for imbalanced prognostic factors confirmed the UK cohort to be characterised by worse risk of death at 30 days and 6 months, independent of patient’s age, gender, tumour stage and status, number of co-morbidities, COVID-19 severity, receipt of anticancer and anti-COVID-19 therapy. Rates of permanent cessation of anticancer therapy post COVID-19 were similar in UK versus EU. / Interpretation: UK cancer patients have been more severely impacted by the unfolding of the COVID-19 pandemic despite societal risk mitigation factors and rapid deferral of anticancer therapy. The increased frailty of UK cancer patients highlights high-risk groups that should be prioritised for anti-SARS-CoV-2 vaccination. Continued evaluation of long-term outcomes is warranted

    Inhibition of PbGP43 expression may suggest that gp43 is a virulence factor in Paracoccidioides brasiliensis

    Get PDF
    ABSTARCT: Glycoprotein gp43 is an immunodominant diagnostic antigen for paracoccidioidomycosis caused by Paracoccidioides brasiliensis. It is abundantly secreted in isolates such as Pb339. It is structurally related to beta-1,3-exoglucanases, however inactive. Its function in fungal biology is unknown, but it elicits humoral, innate and protective cellular immune responses; it binds to extracellular matrix-associated proteins. In this study we applied an antisense RNA (aRNA) technology and Agrobacterium tumefaciens-mediated transformation to generate mitotically stable PbGP43 mutants (PbGP43 aRNA) derived from wild type Pb339 to study its role in P. brasiliensis biology and during infection. Control PbEV was transformed with empty vector. Growth curve, cell vitality and morphology of PbGP43 aRNA mutants were indistinguishable from those of controls. PbGP43 expression was reduced 80-85% in mutants 1 and 2, as determined by real time PCR, correlating with a massive decrease in gp43 expression. This was shown by immunoblotting of culture supernatants revealed with anti-gp43 mouse monoclonal and rabbit polyclonal antibodies, and also by affinity-ligand assays of extracellular molecules with laminin and fibronectin. In vitro, there was significantly increased TNF-α production and reduced yeast recovery when PbGP43 aRNA1 was exposed to IFN-Îł-stimulated macrophages, suggesting reduced binding/uptake and/or increased killing. In vivo, fungal burden in lungs of BALB/c mice infected with silenced mutant was negligible and associated with decreased lung ΙΛ-10 and IL-6. Therefore, our results correlated low gp43 expression with lower pathogenicity in mice, but that will be definitely proven when PbGP43 knockouts become available.

    SARS-CoV-2 omicron (B.1.1.529)-related COVID-19 sequelae in vaccinated and unvaccinated patients with cancer: results from the OnCovid registry

    Get PDF
    BACKGROUND: COVID-19 sequelae can affect about 15% of patients with cancer who survive the acute phase of SARS-CoV-2 infection and can substantially impair their survival and continuity of oncological care. We aimed to investigate whether previous immunisation affects long-term sequelae in the context of evolving variants of concern of SARS-CoV-2. METHODS: OnCovid is an active registry that includes patients aged 18 years or older from 37 institutions across Belgium, France, Germany, Italy, Spain, and the UK with a laboratory-confirmed diagnosis of COVID-19 and a history of solid or haematological malignancy, either active or in remission, followed up from COVID-19 diagnosis until death. We evaluated the prevalence of COVID-19 sequelae in patients who survived COVID-19 and underwent a formal clinical reassessment, categorising infection according to the date of diagnosis as the omicron (B.1.1.529) phase from Dec 15, 2021, to Jan 31, 2022; the alpha (B.1.1.7)-delta (B.1.617.2) phase from Dec 1, 2020, to Dec 14, 2021; and the pre-vaccination phase from Feb 27 to Nov 30, 2020. The prevalence of overall COVID-19 sequelae was compared according to SARS-CoV-2 immunisation status and in relation to post-COVID-19 survival and resumption of systemic anticancer therapy. This study is registered with ClinicalTrials.gov, NCT04393974. FINDINGS: At the follow-up update on June 20, 2022, 1909 eligible patients, evaluated after a median of 39 days (IQR 24-68) from COVID-19 diagnosis, were included (964 [50·7%] of 1902 patients with sex data were female and 938 [49·3%] were male). Overall, 317 (16·6%; 95% CI 14·8-18·5) of 1909 patients had at least one sequela from COVID-19 at the first oncological reassessment. The prevalence of COVID-19 sequelae was highest in the pre-vaccination phase (191 [19·1%; 95% CI 16·4-22·0] of 1000 patients). The prevalence was similar in the alpha-delta phase (110 [16·8%; 13·8-20·3] of 653 patients, p=0·24), but significantly lower in the omicron phase (16 [6·2%; 3·5-10·2] of 256 patients, p<0·0001). In the alpha-delta phase, 84 (18·3%; 95% CI 14·6-22·7) of 458 unvaccinated patients and three (9·4%; 1·9-27·3) of 32 unvaccinated patients in the omicron phase had sequelae. Patients who received a booster and those who received two vaccine doses had a significantly lower prevalence of overall COVID-19 sequelae than unvaccinated or partially vaccinated patients (ten [7·4%; 95% CI 3·5-13·5] of 136 boosted patients, 18 [9·8%; 5·8-15·5] of 183 patients who had two vaccine doses vs 277 [18·5%; 16·5-20·9] of 1489 unvaccinated patients, p=0·0001), respiratory sequelae (six [4·4%; 1·6-9·6], 11 [6·0%; 3·0-10·7] vs 148 [9·9%; 8·4-11·6], p=0·030), and prolonged fatigue (three [2·2%; 0·1-6·4], ten [5·4%; 2·6-10·0] vs 115 [7·7%; 6·3-9·3], p=0·037). INTERPRETATION: Unvaccinated patients with cancer remain highly vulnerable to COVID-19 sequelae irrespective of viral strain. This study confirms the role of previous SARS-CoV-2 immunisation as an effective measure to protect patients from COVID-19 sequelae, disruption of therapy, and ensuing mortality. FUNDING: UK National Institute for Health and Care Research Imperial Biomedical Research Centre and the Cancer Treatment and Research Trust

    Outcomes of the SARS-CoV-2 omicron (B.1.1.529) variant outbreak among vaccinated and unvaccinated patients with cancer in Europe: results from the retrospective, multicentre, OnCovid registry study

    Get PDF
    BACKGROUND: The omicron (B.1.1.529) variant of SARS-CoV-2 is highly transmissible and escapes vaccine-induced immunity. We aimed to describe outcomes due to COVID-19 during the omicron outbreak compared with the prevaccination period and alpha (B.1.1.7) and delta (B.1.617.2) waves in patients with cancer in Europe. METHODS: In this retrospective analysis of the multicentre OnCovid Registry study, we recruited patients aged 18 years or older with laboratory-confirmed diagnosis of SARS-CoV-2, who had a history of solid or haematological malignancy that was either active or in remission. Patient were recruited from 37 oncology centres from UK, Italy, Spain, France, Belgium, and Germany. Participants were followed up from COVID-19 diagnosis until death or loss to follow-up, while being treated as per standard of care. For this analysis, we excluded data from centres that did not actively enter new data after March 1, 2021 (in France, Germany, and Belgium). We compared measures of COVID-19 morbidity, which were complications from COVID-19, hospitalisation due to COVID-19, and requirement of supplemental oxygen and COVID-19-specific therapies, and COVID-19 mortality across three time periods designated as the prevaccination (Feb 27 to Nov 30, 2020), alpha-delta (Dec 1, 2020, to Dec 14, 2021), and omicron (Dec 15, 2021, to Jan 31, 2022) phases. We assessed all-cause case-fatality rates at 14 days and 28 days after diagnosis of COVID-19 overall and in unvaccinated and fully vaccinated patients and in those who received a booster dose, after adjusting for country of origin, sex, age, comorbidities, tumour type, stage, and status, and receipt of systemic anti-cancer therapy. This study is registered with ClinicalTrials.gov, NCT04393974, and is ongoing. FINDINGS: As of Feb 4, 2022 (database lock), the registry included 3820 patients who had been diagnosed with COVID-19 between Feb 27, 2020, and Jan 31, 2022. 3473 patients were eligible for inclusion (1640 [47·4%] were women and 1822 [52·6%] were men, with a median age of 68 years [IQR 57–77]). 2033 (58·5%) of 3473 were diagnosed during the prevaccination phase, 1075 (31·0%) during the alpha-delta phase, and 365 (10·5%) during the omicron phase. Among patients diagnosed during the omicron phase, 113 (33·3%) of 339 were fully vaccinated and 165 (48·7%) were boosted, whereas among those diagnosed during the alpha-delta phase, 152 (16·6%) of 915 were fully vaccinated and 21 (2·3%) were boosted. Compared with patients diagnosed during the prevaccination period, those who were diagnosed during the omicron phase had lower case-fatality rates at 14 days (adjusted odds ratio [OR] 0·32 [95% CI 0·19–0·61) and 28 days (0·34 [0·16–0·79]), complications due to COVID-19 (0·26 [0·17–0·46]), and hospitalisation due to COVID-19 (0·17 [0·09–0·32]), and had less requirements for COVID-19-specific therapy (0·22 [0·15–0·34]) and oxygen therapy (0·24 [0·14–0·43]) than did those diagnosed during the alpha-delta phase. Unvaccinated patients diagnosed during the omicron phase had similar crude case-fatality rates at 14 days (ten [25%] of 40 patients vs 114 [17%] of 656) and at 28 days (11 [27%] of 40 vs 184 [28%] of 656) and similar rates of hospitalisation due to COVID-19 (18 [43%] of 42 vs 266 [41%] of 652) and complications from COVID-19 (13 [31%] of 42 vs 237 [36%] of 659) as those diagnosed during the alpha-delta phase. INTERPRETATION: Despite time-dependent improvements in outcomes reported in the omicron phase compared with the earlier phases of the pandemic, patients with cancer remain highly susceptible to SARS-CoV-2 if they are not vaccinated against SARS-CoV-2. Our findings support universal vaccination of patients with cancer as a protective measure against morbidity and mortality from COVID-19. FUNDING: National Institute for Health and Care Research Imperial Biomedical Research Centre and the Cancer Treatment and Research Trust

    Protein Translation and Cell Death: The Role of Rare tRNAs in Biofilm Formation and in Activating Dormant Phage Killer Genes

    Get PDF
    We discovered previously that the small Escherichia coli proteins Hha (hemolysin expression modulating protein) and the adjacent, poorly-characterized YbaJ are important for biofilm formation; however, their roles have been nebulous. Biofilms are intricate communities in which cell signaling often converts single cells into primitive tissues. Here we show that Hha decreases biofilm formation dramatically by repressing the transcription of rare codon tRNAs which serves to inhibit fimbriae production and by repressing to some extent transcription of fimbrial genes fimA and ihfA. In vivo binding studies show Hha binds to the rare codon tRNAs argU, ileX, ileY, and proL and to two prophage clusters D1P12 and CP4-57. Real-time PCR corroborated that Hha represses argU and proL, and Hha type I fimbriae repression is abolished by the addition of extra copies of argU, ileY, and proL. The repression of transcription of rare codon tRNAs by Hha also leads to cell lysis and biofilm dispersal due to activation of prophage lytic genes rzpD, yfjZ, appY, and alpA and due to induction of ClpP/ClpX proteases which activate toxins by degrading antitoxins. YbaJ serves to mediate the toxicity of Hha. Hence, we have identified that a single protein (Hha) can control biofilm formation by limiting fimbriae production as well as by controlling cell death. The mechanism used by Hha is the control of translation via the availability of rare codon tRNAs which reduces fimbriae production and activates prophage lytic genes. Therefore, Hha acts as a toxin in conjunction with co-transcribed YbaJ (TomB) that attenuates Hha toxicity

    Prevalence and impact of COVID-19 sequelae on treatment and survival of patients with cancer who recovered from SARS-CoV-2 infection: evidence from the OnCovid retrospective, multicentre registry study

    Get PDF
    Background: The medium-term and long-term impact of COVID-19 in patients with cancer is not yet known. In this study, we aimed to describe the prevalence of COVID-19 sequelae and their impact on the survival of patients with cancer. We also aimed to describe patterns of resumption and modifications of systemic anti-cancer therapy following recovery from SARS-CoV-2 infection. Methods: OnCovid is an active European registry study enrolling consecutive patients aged 18 years or older with a history of solid or haematological malignancy and who had a diagnosis of RT-PCR confirmed SARS-CoV-2 infection. For this retrospective study, patients were enrolled from 35 institutions across Belgium, France, Germany, Italy, Spain, and the UK. Patients who were diagnosed with SARS-CoV-2 infection between Feb 27, 2020, and Feb 14, 2021, and entered into the registry at the point of data lock (March 1, 2021), were eligible for analysis. The present analysis was focused on COVID-19 survivors who underwent clinical reassessment at each participating institution. We documented prevalence of COVID-19 sequelae and described factors associated with their development and their association with post-COVID-19 survival, which was defined as the interval from post-COVID-19 reassessment to the patients’ death or last follow-up. We also evaluated resumption of systemic anti-cancer therapy in patients treated within 4 weeks of COVID-19 diagnosis. The OnCovid study is registered in ClinicalTrials.gov, NCT04393974. Findings: 2795 patients diagnosed with SARS-CoV-2 infection between Feb 27, 2020, and Feb 14, 2021, were entered into the study by the time of the data lock on March 1, 2021. After the exclusion of ineligible patients, the final study population consisted of 2634 patients. 1557 COVID-19 survivors underwent a formal clinical reassessment after a median of 22·1 months (IQR 8·4–57·8) from cancer diagnosis and 44 days (28–329) from COVID-19 diagnosis. 234 (15·0%) patients reported COVID-19 sequelae, including respiratory symptoms (116 [49·6%]) and residual fatigue (96 [41·0%]). Sequelae were more common in men (vs women; p=0·041), patients aged 65 years or older (vs other age groups; p=0·048), patients with two or more comorbidities (vs one or none; p=0·0006), and patients with a history of smoking (vs no smoking history; p=0·0004). Sequelae were associated with hospitalisation for COVID-19 (p<0·0001), complicated COVID-19 (p<0·0001), and COVID-19 therapy (p=0·0002). With a median post-COVID-19 follow-up of 128 days (95% CI 113–148), COVID-19 sequelae were associated with an increased risk of death (hazard ratio [HR] 1·80 [95% CI 1·18–2·75]) after adjusting for time to post-COVID-19 reassessment, sex, age, comorbidity burden, tumour characteristics, anticancer therapy, and COVID-19 severity. Among 466 patients on systemic anti-cancer therapy, 70 (15·0%) permanently discontinued therapy, and 178 (38·2%) resumed treatment with a dose or regimen adjustment. Permanent treatment discontinuations were independently associated with an increased risk of death (HR 3·53 [95% CI 1·45–8·59]), but dose or regimen adjustments were not (0·84 [0·35–2·02]). Interpretation: Sequelae post-COVID-19 affect up to 15% of patients with cancer and adversely affect survival and oncological outcomes after recovery. Adjustments to systemic anti-cancer therapy can be safely pursued in treatment-eligible patients. Funding: National Institute for Health Research Imperial Biomedical Research Centre and the Cancer Treatment and Research Trust

    Systemic pro-inflammatory response identifies patients with cancer with adverse outcomes from SARS-CoV-2 infection: the OnCovid Inflammatory Score

    Get PDF
    Background: Cancer patients are particularly susceptible to SARS-CoV-2 infection. The systemic inflammatory response is a pathogenic mechanism shared by cancer progression and Covid-19. We investigated systemic inflammation as a driver of severity and mortality from Covid-19, evaluating the prognostic role of commonly utilized inflammatory indices in SARS-CoV-2-infected cancer patients accrued to the OnCovid study. Methods: In a multi-center cohort of SARS-CoV-2-infected cancer patients in Europe, we evaluated dynamic changes in neutrophil-lymphocyte ratio (NLR); platelet-lymphocyte ratio (PLR); prognostic nutritional index (PNI), renamed the OnCovid Inflammatory Score (OIS); modified Glasgow prognostic score (mGPS); and prognostic index (PI) in relationship to oncological and Covid-19 infection features, testing their prognostic potential in independent training (n=529) and validation (n=542) sets. Results: We evaluated 1,071 eligible patients: 625 (58.3%) males, 420 with malignancy in advanced stage (39.2%), most commonly genitourinary (n=216, 20.2%). 844 (78.8%) had ≄1 comorbidity and 754 (70.4%) ≄1 Covid-19 complication. NLR, OIS, and mGPS worsened at Covid-19 diagnosis compared to pre-Covid-19 measurement (P<0.01), recovering in survivors to pre-Covid-19 levels. Patients in poorer risk categories for each index except the PLR exhibited higher mortality rates (P<0.001) and shorter median overall survival in the training and validation sets (P<0.01). Multivariable analyses revealed the OIS to be most independently predictive of survival (validation set HR 2.48, 95% CI 1.47 – 4.20, P=0.001; adjusted C-index 0.611). Conclusions: Systemic inflammation is a validated prognostic domain in SARS-CoV-2-infected cancer patients and can be utilized as a bedside predictor of adverse outcome. Lymphocytopenia and hypoalbuminemia as computed by the OIS are independently predictive of severe Covid-19, supporting their use for risk stratification. Reversal of the Covid-19-induced pro-inflammatory state is a putative therapeutic strategy in patients with cancer

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    • 

    corecore