33 research outputs found

    Neuroticism And Individual Differences In Neural Function In Unmedicated Major Depression: Findings From The Embarc Study

    Get PDF
    BACKGROUND: Personality dysfunction represents one of the only predictors of differential response between active treatments for depression to have replicated. We examine whether depressed patients with higher neuroticism scores, a marker of personality dysfunction, show differences compared with depressed patients with lower scores in the functioning of two brain regions associated with treatment response, the anterior cingulate and anterior insula cortices. METHODS: Functional magnetic resonance imaging data during an emotional Stroop task were collected from 135 adults with major depressive disorder at four academic medical centers participating in the EMBARC (Establishing Moderators and Biosignatures of Antidepressant Response for Clinical Care) study. Secondary analyses were conducted including a sample of 28 healthy subjects. RESULTS: In whole-brain analyses, higher neuroticism among adults with depression was associated with increased activity in and connectivity with the right anterior insula cortex to incongruent compared with congruent emotional stimuli (all k $ 281, all p , .05 familywise error corrected), covarying for concurrent psychiatric distress. We also observed an unanticipated relationship between neuroticism and reduced activity in the precuneus (k 5 269, p , .05 familywise error corrected). Exploratory analyses including healthy subjects suggested that associations between neuroticism and brain function may be nonlinear over the full range of neuroticism scores. CONCLUSIONS: This study provides convergent evidence for the importance of the right anterior insula cortex as a brain-based marker of clinically meaningful individual differences in neuroticism among adults with depression. This is a critical next step in linking personality dysfunction, a replicated clinical predictor of differential antidepressant treatment response, with differences in underlying brain function

    The Monarch Initiative in 2019: an integrative data and analytic platform connecting phenotypes to genotypes across species.

    Get PDF
    In biology and biomedicine, relating phenotypic outcomes with genetic variation and environmental factors remains a challenge: patient phenotypes may not match known diseases, candidate variants may be in genes that haven\u27t been characterized, research organisms may not recapitulate human or veterinary diseases, environmental factors affecting disease outcomes are unknown or undocumented, and many resources must be queried to find potentially significant phenotypic associations. The Monarch Initiative (https://monarchinitiative.org) integrates information on genes, variants, genotypes, phenotypes and diseases in a variety of species, and allows powerful ontology-based search. We develop many widely adopted ontologies that together enable sophisticated computational analysis, mechanistic discovery and diagnostics of Mendelian diseases. Our algorithms and tools are widely used to identify animal models of human disease through phenotypic similarity, for differential diagnostics and to facilitate translational research. Launched in 2015, Monarch has grown with regards to data (new organisms, more sources, better modeling); new API and standards; ontologies (new Mondo unified disease ontology, improvements to ontologies such as HPO and uPheno); user interface (a redesigned website); and community development. Monarch data, algorithms and tools are being used and extended by resources such as GA4GH and NCATS Translator, among others, to aid mechanistic discovery and diagnostics

    Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources.

    Get PDF
    The Human Phenotype Ontology (HPO)-a standardized vocabulary of phenotypic abnormalities associated with 7000+ diseases-is used by thousands of researchers, clinicians, informaticians and electronic health record systems around the world. Its detailed descriptions of clinical abnormalities and computable disease definitions have made HPO the de facto standard for deep phenotyping in the field of rare disease. The HPO\u27s interoperability with other ontologies has enabled it to be used to improve diagnostic accuracy by incorporating model organism data. It also plays a key role in the popular Exomiser tool, which identifies potential disease-causing variants from whole-exome or whole-genome sequencing data. Since the HPO was first introduced in 2008, its users have become both more numerous and more diverse. To meet these emerging needs, the project has added new content, language translations, mappings and computational tooling, as well as integrations with external community data. The HPO continues to collaborate with clinical adopters to improve specific areas of the ontology and extend standardized disease descriptions. The newly redesigned HPO website (www.human-phenotype-ontology.org) simplifies browsing terms and exploring clinical features, diseases, and human genes

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Methadone and perinatal outcomes – a prospective cohort study.

    No full text
    Aims: Methadone use in pregnancy has been associated with adverse perinatal outcomes and neonatal abstinence syndrome (NAS). This study aimed to examine perinatal outcomes and NAS in relation to i)concomitant drug use and ii)methadone dose. Design: Prospective cohort study. Setting: Two tertiary care maternity hospitals. Participants: 117 pregnant women on methadone maintenance treatment recruited between July 2009 and July 2010. Measurements: Information on concomitant drug use was recorded with the Addiction Severity Index. Perinatal outcomes included preterm birth (<37 weeks’ gestation), small for gestational age (<10th centile) and neonatal unit admission. NAS outcomes included: incidence of medically treated NAS, peak Finnegan score, cumulative dose of NAS treatment and duration of hospitalisation. Findings: Of the 114 liveborn infants 11 (9.6%) were born preterm, 49 (42.9%) were small for gestational age, 56 (49.1%) had a neonatal unit admission and 29 (25.4%) were medically treated for NAS. Neonates exposed to methadone only had a shorter hospitalisation than those exposed to methadone and concomitant drugs (median 5.0 days versus 6.0 days, p = 0.03). Neonates exposed to methadone doses ≥80mg required higher cumulative doses of morphine treatment for NAS (median 13.2 mg versus 19.3mg, p = 0.03). The incidence and duration of NAS did not differ between the two dosage groups. Conclusion: The incidence and duration of the neonatal abstinence syndrome is not associated with material methadone dose, but maternal opiate, benzodiazepine or cocaine use is associated with longer neonatal hospitalisation

    Regulation of SPRY3 by X chromosome and PAR2-linked promoters in an autism susceptibility region

    No full text
    Sprouty proteins are regulators of cell growth and branching morphogenesis. Unlike mouse Spry3, which is X-linked, human SPRY3 maps to the pseudoautosomal region 2; however, the human Y-linked allele is not expressed due to epigenetic silencing by an unknown mechanism. SPRY3 maps adjacent to X-linked Trimethyllysine hydroxylase epsilon (TMLHE), recently identified as an autism susceptibility gene. We report that Spry3 is highly expressed in central and peripheral nervous system ganglion cells in mouse and human, including cerebellar Purkinje cells and retinal ganglion cells. Transient over-expression or knockdown of Spry3 in cultured mouse superior cervical ganglion cells inhibits and promotes, respectively, neurite growth and branching. A 0.7 kb gene fragment spanning the human SPRY3 transcriptional start site recapitulates the endogenous Spry3-expression pattern in LacZ reporter mice. In the human and mouse the SPRY3 promoter contains an AG-rich repeat and we found co-expression, and promoter binding and/or regulation of SPRY3 expression by transcription factors MAZ, EGR1, ZNF263 and PAX6. We identified eight alleles of the human SPRY3 promoter repeat in Caucasians, and similar allele frequencies in autism families. We characterized multiple SPRY3 transcripts originating at two CpG islands in the X-linked F8A3-TMLHE region, suggesting X chromosome regulation of SPRY3. These findings provide an explanation for differential regulation of X and Y-linked SPRY3 alleles. In addition, the presence of a SPRY3 transcript exon in a previously described X chromosome deletion associated with autism, and the cerebellar interlobular variation in Spry3 expression coincident with the reported pattern of Purkinje cell loss in autism, suggest SPRY3 as a candidate susceptibility locus for autism
    corecore