49 research outputs found

    Diffusion NMR: From catalysts to gelatin, a useful tool for exploring structure and dynamics in porous networks

    Get PDF
    In this work several applications of the technique to systems of industrial relevance, including catalysts and gelatinous materials, will be presented

    NMR Investigation into the Influence of Surface Interactions on Liquid Diffusion in a Mesoporous Catalyst Support

    Get PDF
    Abstract: Pulsed field gradient NMR diffusion measurements provide a non-invasive measure of the mass transport (self-diffusion) characteristics of liquids confined to porous catalyst materials. Here we explore the ability of this technique to probe the diffusive behaviour of a series of short-chain primary alcohols within a mesoporous catalyst support material; through the comparison of our results with highly surface-sensitive NMR relaxation data, we show that the evaluation of bulk-pore diffusion dynamics may provide a simple and indirect method to access and explore surface interaction phenomena occurring at the catalyst-liquid interface

    Heterogenised catalysts for the H-transfer reduction reaction of aldehydes: influence of solvent and solvation effects on reaction performances

    Get PDF
    Heterogenisation of homogeneous catalysts onto solid supports represents a potential strategy to make the homogeneous catalytic function recyclable and reuseable. Yet, it is usually the case that immobilised catalysts have much lower catalytic activity than their homogeneous counterpart. In addition, the presence of a solid interface introduces a higher degree of complexity by modulating solid/fluid interactions, which can often influence adsorption properties of solvents and reactive species and, ultimately, catalytic activity. In this work, the influence of support and solvent in the H-transfer reduction of propionaldehyde over Al((OPr)-Pr-i)(3)-SiO2, Al((OPr)-Pr-i)(3)-TiO2 and Al((OPr)-Pr-i)(3)-Al2O3 heterogenised catalysts has been studied. Reaction studies are coupled with both NMR relaxation measurements as well as molecular dynamics (MD) simulations in order to unravel surface and solvation effects during the reaction. The results show that, whilst the choice of the support does not influence significantly catalytic activity, reactions carried out in solvents with high affinity for the catalyst surface, or able to hinder access to active sites due to solvation effects, have a lower activity. MD calculations provide key insights into bulk solvation effects involved in such reactions, which are thought to play an important role in determining the catalytic behaviour. The activity of the heterogenised catalysts was found to be comparable with that of the homogeneous Al((OPr)-Pr-i)(3) catalysts for all supports used, showing that for the type of reaction studied immobilisation of the homogeneous catalyst onto solid supports is a viable, robust and effective strategy

    23Na NMR T1 relaxation measurements as a probe for diffusion and dynamics of sodium ions in salt–glycerol mixtures

    Get PDF
    Mixtures of sodium salts with oxygen-containing molecules are useful from the perspective of applications such as sodium ion batteries because they fill the gap between deep eutectic solvents and molten salt hydrates. In a previous work, the physical properties (such as diffusion coefficients, conductivity, viscosity, and glass transition temperature) of four salts, namely, Na2B4O7 · 10H2O, NaOAc · 3H2O, NaBr, and NaOAc, were measured with glycerol. Pulsed-field gradient (PFG) nuclear magnetic resonance (NMR) was also used to measure self-diffusion coefficients of 1H-bearing species. However, the technique was not able to measure diffusion of sodium ions due to the very fast NMR relaxation rate of such species, resulting in loss of the PFG NMR signal. In the current work, this study is expanded using 23Na T1 relaxation measurements which, under certain assumptions, can be translated into diffusion coefficients. Analysis of the physical properties is then correlated with self-diffusion coefficient measurements to elucidate information about structure and ionic mobility. It is shown that NaOAc · 3H2O, NaBr, and NaOAc fit models for ionic conductivity and diffusion, which are consistent with ionic liquids where charge transport is limited by ionic mobility rather than the number of charge carriers. The waters of hydration of NaOAc · 3H2O do not appear to form a separate phase but are instead strongly coordinated to the cation. In contrast, Na2B4O7 · 10H2O appears to form a water-rich phase with enhanced sodium mobility

    Intracranial Hemorrhage from Dural Arteriovenous Fistulas: What Can We Find with CT Angiography?

    Get PDF
    Background: Dural arteriovenous fistulas (DAVF) represent a rare acquired intracranial vascular malformation, with a variety of clinical signs and symptoms, which make their diagnosis difficult. Intracranial hemorrhage is one of the most serious clinical manifestations. In this paper the authors’ goal was to verify the accuracy and utility of contrast-enhanced brain CT angiography (CTA) for the identification and the characterization of dural arteriovenous fistulas (DAVFs) in patients who presented with brain hemorrhage compared to 3D digital subtraction angiography (3D DSA); (2) a retrospective study of 26 patients with DAVFs who presented with intracranial hemorrhage to our institution was performed. The information reviewed included clinical presentation, location and size of hemorrhage, brain CTA and 3D DSA findings; (3) results: 61% (16/26) of DAVFs were identified by CTA. The vast majority of patients were male (69%, 18/26) and the most common presenting symptom was sudden onset headache. All DAVFs had cortical venous drainage and about one-third were associated with a venous varix. The most common location was tentorial (73%, 19/26); (4) conclusions: CTA can represent a valid alternative diagnostic method to 3D DSA for the study of DAVF in the initial and preliminary diagnostic approach, especially in emergency situations. In fact, it represents a fast, inexpensive, non-invasive and above all, easily accessible and available diagnostic technique, unlike DSA or MRI, allowing to provide information necessary for the identification, classification and treatment planning of DAVF

    Diffusion NMR: From catalysts to gelatin, a useful tool for exploring structure and dynamics in porous networks

    No full text
    In this work several applications of the technique to systems of industrial relevance, including catalysts and gelatinous materials, will be presented

    Diffusion NMR: From catalysts to gelatin, a useful tool for exploring structure and dynamics in porous networks

    Get PDF
    In this work several applications of the technique to systems of industrial relevance, including catalysts and gelatinous materials, will be presented
    corecore