684 research outputs found
A Naturally Narrow Positive Parity Theta^+
We present a consistent color-flavor-spin-orbital wave function for a
positive parity Theta^+ that naturally explains the observed narrowness of the
state. The wave function is totally symmetric in its flavor-spin part and
totally antisymmetric in its color-orbital part. If flavor-spin interactions
dominate, this wave function renders the positive parity Theta^+ lighter than
its negative parity counterpart. We consider decays of the Theta^+ and compute
the overlap of this state with the kinematically allowed final states. Our
results are numerically small. We note that dynamical correlations between
quarks are not necessary to obtain narrow pentaquark widths.Comment: 10 pages, 1 figure, Revtex4, two-column format, version to be
published in Phys. Rev. D, includes numerical estimates of decay width
A perturbative approach to decays into two mesons
The modified perturbative approach in which transverse degrees of freedom as
well as Sudakov suppressions are taken into account, is applied to decays
into two mesons. The influence of various model parameters (CKM matrix
elements, decay constant, mesonic wave functions) on the results as well as
short distance corrections to the weak Hamiltonian are discussed in some
detail. The perturbative contributions to the decays yield branching ratios
of the order of which values are well below the upper
limit for the branching ratio as measured by CLEO.Comment: 26 pages, RevTex, 6 figures appended (compressed and uuencode using
'uufiles'
Parity Violation in Proton-Proton Scattering at 221 MeV
TRIUMF experiment 497 has measured the parity violating longitudinal
analyzing power, A_z, in pp elastic scattering at 221.3 MeV incident proton
energy. This paper includes details of the corrections, some of magnitude
comparable to A_z itself, required to arrive at the final result. The largest
correction was for the effects of first moments of transverse polarization. The
addition of the result, A_z=(0.84 \pm 0.29 (stat.) \pm 0.17 (syst.)) \times
10^{-7}, to the pp parity violation experimental data base greatly improves the
experimental constraints on the weak meson-nucleon coupling constants
h^{pp}_\rho and h^{pp}_\omega, and has implications for the interpretation of
electron parity violation experiments.Comment: 17 pages RevTeX, 14 PostScript figures. Revised version with
additions suggested by Phys. Rev.
Benchmark Test Calculation of a Four-Nucleon Bound State
In the past, several efficient methods have been developed to solve the
Schroedinger equation for four-nucleon bound states accurately. These are the
Faddeev-Yakubovsky, the coupled-rearrangement-channel Gaussian-basis
variational, the stochastic variational, the hyperspherical variational, the
Green's function Monte Carlo, the no-core shell model and the effective
interaction hyperspherical harmonic methods. In this article we compare the
energy eigenvalue results and some wave function properties using the realistic
AV8' NN interaction. The results of all schemes agree very well showing the
high accuracy of our present ability to calculate the four-nucleon bound state.Comment: 17 pages, 1 figure
On a Light Spinless Particle Coupled to Photons
A pseudoscalar or scalar particle that couples to two photons but not
to leptons, quarks and nucleons would have effects in most of the experiments
searching for axions, since these are based on the coupling.
We examine the laboratory, astrophysical and cosmological constraints on
and study whether it may constitute a substantial part of the dark matter. We
also generalize the interactions to possess gauge
invariance, and analyze the phenomenological implications.Comment: LaTex, 20p., 6 figures. Changes in sections 4, 5 and figure 2, our
bounds are now more stringent. To be published in Physical Review
Parity-Violating Interaction Effects I: the Longitudinal Asymmetry in pp Elastic Scattering
The proton-proton parity-violating longitudinal asymmetry is calculated in
the lab-energy range 0--350 MeV, using a number of different, latest-generation
strong-interaction potentials--Argonne V18, Bonn-2000, and Nijmegen-I--in
combination with a weak-interaction potential consisting of rho- and
omega-meson exchanges--the model known as DDH. The complete scattering problem
in the presence of parity-conserving, including Coulomb, and parity-violating
potentials is solved in both configuration- and momentum-space. The predicted
parity-violating asymmetries are found to be only weakly dependent upon the
input strong-interaction potential adopted in the calculation. Values for the
rho- and omega-meson weak coupling constants and
are determined by reproducing the measured asymmetries at 13.6 MeV, 45 MeV, and
221 MeV.Comment: 24 pages, 8 figures, submitted to Physical Review
Towards the high-accuracy determination of the 238U fission cross section at the threshold region at CERN - N-TOF
The 238U fission cross section is an international standard beyond 2 MeV where the fission plateau starts. However, due to its importance in fission reactors, this cross-section should be very accurately known also in the threshold region below 2 MeV. The 238U fission cross section has been measured relative to the 235U fission cross section at CERN - n-TOF with different detection systems. These datasets have been collected and suitably combined to increase the counting statistics in the threshold region from about 300 keV up to 3 MeV. The results are compared with other experimental data, evaluated libraries, and the IAEA standards
Investigation of the Exclusive 3He(e,e'pp)n Reaction
Cross sections for the 3He(e,e'pp)n reaction were measured over a wide range
of energy and three- momentum transfer. At a momentum transfer q=375 MeV/c,
data were taken at transferred energies omega ranging from 170 to 290 MeV. At
omega=220 MeV, measurements were performed at three q values (305, 375, and 445
MeV/c). The results are presented as a function of the neutron momentum in the
final-state, as a function of the energy and momentum transfer, and as a
function of the relative momentum of the two-proton system. The data at neutron
momenta below 100 MeV/c, obtained for two values of the momentum transfer at
omega=220 MeV, are well described by the results of continuum-Faddeev
calculations. These calculations indicate that the cross section in this domain
is dominated by direct two-proton emission induced by a one-body hadronic
current. Cross section distributions determined as a function of the relative
momentum of the two protons are fairly well reproduced by continuum-Faddeev
calculations based on various realistic nucleon-nucleon potential models. At
higher neutron momentum and at higher energy transfer, deviations between data
and calculations are observed that may be due to contributions of isobar
currents.Comment: 14 pages, 1 table, 17 figure
Spallation reactions. A successful interplay between modeling and applications
The spallation reactions are a type of nuclear reaction which occur in space
by interaction of the cosmic rays with interstellar bodies. The first
spallation reactions induced with an accelerator took place in 1947 at the
Berkeley cyclotron (University of California) with 200 MeV deuterons and 400
MeV alpha beams. They highlighted the multiple emission of neutrons and charged
particles and the production of a large number of residual nuclei far different
from the target nuclei. The same year R. Serber describes the reaction in two
steps: a first and fast one with high-energy particle emission leading to an
excited remnant nucleus, and a second one, much slower, the de-excitation of
the remnant. In 2010 IAEA organized a worskhop to present the results of the
most widely used spallation codes within a benchmark of spallation models. If
one of the goals was to understand the deficiencies, if any, in each code, one
remarkable outcome points out the overall high-quality level of some models and
so the great improvements achieved since Serber. Particle transport codes can
then rely on such spallation models to treat the reactions between a light
particle and an atomic nucleus with energies spanning from few tens of MeV up
to some GeV. An overview of the spallation reactions modeling is presented in
order to point out the incomparable contribution of models based on basic
physics to numerous applications where such reactions occur. Validations or
benchmarks, which are necessary steps in the improvement process, are also
addressed, as well as the potential future domains of development. Spallation
reactions modeling is a representative case of continuous studies aiming at
understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie
Threshold analyses and Lorentz violation
In the context of threshold investigations of Lorentz violation, we discuss
the fundamental principle of coordinate invariance, the role of an effective
dynamical framework, and the conditions of positivity and causality. Our
analysis excludes a variety of previously considered Lorentz-breaking
parameters and opens an avenue for viable dispersion-relation investigations of
Lorentz violation.Comment: 9 page
- …
