152 research outputs found

    Multi-tissue coexpression networks reveal unexpected subnetworks associated with disease

    Get PDF
    Tissue-to-tissue coexpression networks between genes in hypothalamus, liver or adipose tissue enable identification of obesity-specific genes

    Multi-tissue coexpression networks reveal unexpected subnetworks associated with disease

    Get PDF
    Background Obesity is a particularly complex disease that at least partially involves genetic and environmental perturbations to gene-networks connecting the hypothalamus and several metabolic tissues, resulting in an energy imbalance at the systems level. Results To provide an inter-tissue view of obesity with respect to molecular states that are associated with physiological states, we developed a framework for constructing tissue-to-tissue coexpression networks between genes in the hypothalamus, liver or adipose tissue. These networks have a scale-free architecture and are strikingly independent of gene-gene coexpression networks that are constructed from more standard analyses of single tissues. This is the first systematic effort to study inter-tissue relationships and highlights genes in the hypothalamus that act as information relays in the control of peripheral tissues in obese mice. The subnetworks identified as specific to tissue-to-tissue interactions are enriched in genes that have obesity-relevant biological functions such as circadian rhythm, energy balance, stress response, or immune response. Conclusions Tissue-to-tissue networks enable the identification of disease-specific genes that respond to changes induced by different tissues and they also provide unique details regarding candidate genes for obesity that are identified in genome-wide association studies. Identifying such genes from single tissue analyses would be difficult or impossible

    Thrombospondin-4 is a putative tumour-suppressor gene in colorectal cancer that exhibits age-related methylation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Thrombospondin-4 </it>(<it>THBS4</it>) is a member of the extracellular calcium-binding protein family and is involved in cell adhesion and migration. The aim of this study was to evaluate the potential role of deregulation of <it>THBS4 </it>expression in colorectal carcinogenesis. Of particular interest was the possible silencing of expression by methylation of the CpG island in the gene promoter.</p> <p>Methods</p> <p>Fifty-five sporadic colorectal tumours stratified for the CpG Island Methylator Phenotype (CIMP) were studied. Immunohistochemical staining of THBS4 protein was assessed in normal and tumour specimens. Relative levels of <it>THBS4 </it>transcript expression in matched tumours and normal mucosa were also determined by quantitative RT-PCR. Colony forming ability was examined in 8 cell lines made to overexpress THBS4. Aberrant promoter hypermethylation was investigated as a possible mechanism of gene disruption using MethyLight. Methylation was also assessed in the normal colonic tissue of 99 patients, with samples biopsied from four regions along the length of the colon.</p> <p>Results</p> <p><it>THBS4 </it>expression was significantly lower in tumour tissue than in matched normal tissue. Immunohistochemical examination demonstrated that THBS4 protein was generally absent from normal epithelial cells and tumours, but was occasionally expressed at low levels in the cytoplasm towards the luminal surface in vesicular structures. Forced THBS4 over-expression caused a 50-60% repression of tumour colony growth in all eight cell lines examined compared to control cell lines. Tumours exhibited significantly higher levels of methylation than matched normal mucosa, and <it>THBS4 </it>methylation correlated with the CpG island methylator phenotype. There was a trend towards decreased gene expression in tumours exhibiting high <it>THBS4 </it>methylation, but the correlation was not significant. <it>THBS4 </it>methylation was detectable in normal mucosal biopsies where it correlated with increasing patient age and negatively with the occurrence of adenomas elsewhere in the colon.</p> <p>Conclusions</p> <p><it>THBS4 </it>shows increased methylation in colorectal cancer, but this is not strongly associated with altered gene expression, either because methylation has not always reached a critical level or because other factors influence <it>THBS4 </it>expression. <it>THBS4 </it>may act as a tumour suppressor gene, demonstrated by its suppression of tumour colony formation <it>in vitro</it>. <it>THBS4 </it>methylation is detectable in normal colonic mucosa and its level may be a biomarker for the occurrence of adenomas and carcinoma.</p

    Correction of Population Stratification in Large Multi-Ethnic Association Studies

    Get PDF
    The vast majority of genetic risk factors for complex diseases have, taken individually, a small effect on the end phenotype. Population-based association studies therefore need very large sample sizes to detect significant differences between affected and non-affected individuals. Including thousands of affected individuals in a study requires recruitment in numerous centers, possibly from different geographic regions. Unfortunately such a recruitment strategy is likely to complicate the study design and to generate concerns regarding population stratification.We analyzed 9,751 individuals representing three main ethnic groups - Europeans, Arabs and South Asians - that had been enrolled from 154 centers involving 52 countries for a global case/control study of acute myocardial infarction. All individuals were genotyped at 103 candidate genes using 1,536 SNPs selected with a tagging strategy that captures most of the genetic diversity in different populations. We show that relying solely on self-reported ethnicity is not sufficient to exclude population stratification and we present additional methods to identify and correct for stratification.Our results highlight the importance of carefully addressing population stratification and of carefully “cleaning” the sample prior to analyses to obtain stronger signals of association and to avoid spurious results

    The Emotional and Attentional Impact of Exposure to One's Own Body in Bulimia Nervosa: A Physiological View

    Get PDF
    Background: Body dissatisfaction is the most relevant body image disturbance in bulimia nervosa (BN). Research has shown that viewing one's own body evokes negative thoughts and emotions in individuals with BN. However, the psychophysiological mechanisms involved in this negative reaction have not yet been clearly established. Our aim was to examine the emotional and attentional processes that are activated when patients with BN view their own bodies. Method: We examined the effects of viewing a video of one's own body on the physiological (eye-blink startle, cardiac defense, and skin conductance) and subjective (pleasure, arousal, and control ratings) responses elicited by a burst of 110 dB white noise of 500 ms duration. The participants were 30 women with BN and 30 healthy control women. The experimental task consisted of two consecutive and counterbalanced presentations of the auditory stimulus preceded, alternatively, by a video of the participant's own body versus no such video. Results: The results showed that, when viewing their own bodies, women with BN experienced (a) greater inhibition of the startle reflex, (b) greater cardiac acceleration in the first component of the defense reaction, (c) greater skin conductance response, and (d) less subjective pleasure and control combined with greater arousal, compared with the control participants. Conclusion: Our findings suggest that, for women with BN, peripheral-physiological responses to self-images are dominated by attentional processes, which provoke an immobility reaction caused by a dysfunctional negative response to their own body.The present research was supported by grants from the Spanish Ministry of Economy and Competitiveness [PSI2009-08417 and PSI2012-31395]. P.P. was supported by grants from the Spanish Ministry of Science and Innovation and University Jaume I [ECO2011-23634, P1-1B2012-27, and JCI-2010-06790]

    Children’s Moral Emotion Attribution in the Happy Victimizer Task: The Role of Response Format

    Get PDF
    Previous research in the happy victimizer tradition indicated that preschool and early elementary-school children attribute positive emotions to the violator of a moral norm, whereas older children attribute negative moral emotions. Cognitive and motivational processes have been suggested as underlying this developmental shift. The current research investigated whether making the happy victimizer task less cognitively demanding, by providing children with alternative response formats, would increase children’s attribution of moral emotions and moral motivation. In Study 1, 93 4- to 7-year-old British children responded to the happy victimizer questions either in a normal condition (where they spontaneously pointed with a finger), a wait condition (where they had to wait before giving their answers), or an arrow condition (where they had to point with a paper arrow). In Study 2, 40 Spanish 4-year-old children responded in the happy victimizer task either in a normal or a wait condition. In both studies, participants’ attribution of moral emotions and moral motivation was significantly higher in the conditions with alternative response formats (wait, arrow) than in the normal condition. The role of cognitive abilities for emotion attribution in the happy victimizer task is discussed

    The thymic medulla is required for Foxp3+ regulatory but not conventional CD4+ thymocyte development

    Get PDF
    A key role of the thymic medulla is to negatively select autoreactive CD4(+) and CD8(+) thymocytes, a process important for T cell tolerance induction. However, the involvement of the thymic medulla in other aspects of αÎČ T cell development, including the generation of Foxp3(+) natural regulatory T cells (nT(reg) cells) and the continued maturation of positively selected conventional αÎČ T cells, is unclear. We show that newly generated conventional CD69(+)Qa2(−) CD4 single-positive thymocytes mature to the late CD69(−)Qa2(+) stage in the absence of RelB-dependent medullary thymic epithelial cells (mTECs). Furthermore, an increasing ability to continue maturation extrathymically is observed within the CD69(+)CCR7(−/lo)CCR9(+) subset of conventional SP4 thymocytes, providing evidence for an independence from medullary support by the earliest stages after positive selection. In contrast, Foxp3(+) nT(reg) cell development is medullary dependent, with mTECs fostering the generation of Foxp3(−)CD25(+) nT(reg) cell precursors at the CD69(+)CCR7(+)CCR9(−) stage. Our results demonstrate a differential requirement for the thymic medulla in relation to CD4 conventional and Foxp3(+) thymocyte lineages, in which an intact mTEC compartment is a prerequisite for Foxp3(+) nT(reg) cell development through the generation of Foxp3(−)CD25(+) nT(reg) cell precursors

    Ancient Plasmodium genomes shed light on the history of human malaria

    Get PDF
    Malaria-causing protozoa of the genus Plasmodium have exerted one of the strongest selective pressures on the human genome, and resistance alleles provide biomolecular footprints that outline the historical reach of these species1. Nevertheless, debate persists over when and how malaria parasites emerged as human pathogens and spread around the globe1,2. To address these questions, we generated high-coverage ancient mitochondrial and nuclear genome-wide data from P. falciparum, P. vivax and P. malariae from 16 countries spanning around 5,500 years of human history. We identified P. vivax and P. falciparum across geographically disparate regions of Eurasia from as early as the fourth and first millennia bce, respectively; for P. vivax, this evidence pre-dates textual references by several millennia3. Genomic analysis supports distinct disease histories for P. falciparum and P. vivax in the Americas: similarities between now-eliminated European and peri-contact South American strains indicate that European colonizers were the source of American P. vivax, whereas the trans-Atlantic slave trade probably introduced P. falciparum into the Americas. Our data underscore the role of cross-cultural contacts in the dissemination of malaria, laying the biomolecular foundation for future palaeo-epidemiological research into the impact of Plasmodium parasites on human history. Finally, our unexpected discovery of P. falciparum in the high-altitude Himalayas provides a rare case study in which individual mobility can be inferred from infection status, adding to our knowledge of cross-cultural connectivity in the region nearly three millennia ago.This project was funded by the National Science Foundation, grants BCS-2141896 and BCS-1528698; the European Research Council (ERC) under the European Union’s Horizon 2020 programme, grants 851511-MICROSCOPE (to S. Schiffels), 771234-PALEoRIDER (to W.H.) and starting grant 805268-CoDisEASe (to K.I.B.); and the ERC starting grant Waves ERC758967 (supporting K. NĂ€gele and S.C.). We thank the Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean for supporting M. Michel, E. Skourtanioti, A.M., R.A.B., L.C.B., G.U.N., N.S., V.V.-M., M. McCormick, P.W.S., C.W. and J.K.; the Kone Foundation for supporting E.K.G. and A.S.; and the Faculty of Medicine and the Faculty of Biological and Environmental Sciences at the University of Helsinki for grants to E.K.G. A.S. thanks the Magnus Ehrnrooth Foundation, the Sigrid JusĂ©lius Foundation, the Finnish Cultural Foundation, the Academy of Finland, the Life and Health Medical Foundation and the Finnish Society of Sciences and Letters. M.C.B. acknowledges funding from: research project PID2020-116196GB-I00 funded by MCIN/AEI/10.13039/501100011033; the Spanish Ministry of Culture; the Chiang Ching Kuo Foundation; FundaciĂłn Palarq; the EU FP7 Marie Curie Zukunftskolleg Incoming Fellowship Programme, University of Konstanz (grant 291784); STAR2-Santander Universidades and Ministry of Education, Culture and Sports; and CEI 2015 project Cantabria Campus Internacional. M.E. received support from the Czech Academy of Sciences award Praemium Academiae and project RVO 67985912 of the Institute of Archaeology of the Czech Academy of Sciences, Prague. This work has been funded within project PID2020-115956GB-I00 ‘Origen y conformaciĂłn del Bronce Valenciano’, granted by the Ministry of Science and Innovation of the Government of Spain, and grants from the Canadian Institutes for Health Research (MZI187236), Research Nova Scotia (RNS 2023-2565) and The Center for Health Research in Developing Countries. D.K. is the Canada research chair in translational vaccinology and inflammation. R.L.K. acknowledges support from a 2019 University of Otago research grant (Human health and adaptation along Silk Roads, a bioarchaeological investigation of a medieval Uzbek cemetery). P.O. thanks the Jane and Aatos Erkko Foundation, the Finnish Cultural Foundation and the Academy of Finland. S. Peltola received support from the Emil Aaltonen Foundation and the Ella and Georg Ehrnrooth Foundation. D.C.S.-G. thanks the Generalitat Valenciana (CIDEGENT/2019/061). E.W.K. acknowledges support from the DEEPDEAD project, HERA-UP, CRP (15.055) and the Horizon 2020 programme (grant 649307). M. Spyrou thanks the Elite program for postdocs of the Baden-WĂŒrttemberg Stiftung. Open access funding provided by Max Planck Society

    The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry

    Get PDF
    The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations

    Full-length human placental sFlt-1-e15a isoform induces distinct maternal phenotypes of preeclampsia in mice

    Get PDF
    <div><p>Objective</p><p>Most anti-angiogenic preeclampsia models in rodents utilized the overexpression of a truncated soluble fms-like tyrosine kinase-1 (sFlt-1) not expressed in any species. Other limitations of mouse preeclampsia models included stressful blood pressure measurements and the lack of postpartum monitoring. We aimed to 1) develop a mouse model of preeclampsia by administering the most abundant human placental sFlt-1 isoform (hsFlt-1-e15a) in preeclampsia; 2) determine blood pressures in non-stressed conditions; and 3) develop a survival surgery that enables the collection of fetuses and placentas and postpartum (PP) monitoring.</p><p>Methods</p><p>Pregnancy status of CD-1 mice was evaluated with high-frequency ultrasound on gestational days (GD) 6 and 7. Telemetry catheters were implanted in the carotid artery on GD7, and their positions were verified by ultrasound on GD13. Mice were injected through tail-vein with adenoviruses expressing hsFlt-1-e15a (n = 11) or green fluorescent protein (GFP; n = 9) on GD8/GD11. Placentas and pups were delivered by cesarean section on GD18 allowing PP monitoring. Urine samples were collected with cystocentesis on GD6/GD7, GD13, GD18, and PPD8, and albumin/creatinine ratios were determined. GFP and hsFlt-1-e15a expression profiles were determined by qRT-PCR. Aortic ring assays were performed to assess the effect of hsFlt-1-e15a on endothelia.</p><p>Results</p><p>Ultrasound predicted pregnancy on GD7 in 97% of cases. Cesarean section survival rate was 100%. Mean arterial blood pressure was higher in hsFlt-1-e15a-treated than in GFP-treated mice (∆MAP = 13.2 mmHg, p = 0.00107; GD18). Focal glomerular changes were found in hsFlt-1-e15a -treated mice, which had higher urine albumin/creatinine ratios than controls (109.3±51.7ÎŒg/mg vs. 19.3±5.6ÎŒg/mg, p = 4.4x10<sup>-2</sup>; GD18). Aortic ring assays showed a 46% lesser microvessel outgrowth in hsFlt-1-e15a-treated than in GFP-treated mice (p = 1.2x10<sup>-2</sup>). Placental and fetal weights did not differ between the groups. One mouse with liver disease developed early-onset preeclampsia-like symptoms with intrauterine growth restriction (IUGR).</p><p>Conclusions</p><p>A mouse model of late-onset preeclampsia was developed with the overexpression of hsFlt-1-e15a, verifying the <i>in vivo</i> pathologic effects of this primate-specific, predominant placental sFlt-1 isoform. HsFlt-1-e15a induced early-onset preeclampsia-like symptoms associated with IUGR in a mouse with a liver disease. Our findings support that hsFlt-1-e15a is central to the terminal pathway of preeclampsia, and it can induce the full spectrum of symptoms in this obstetrical syndrome.</p></div
    • 

    corecore