9 research outputs found
Higher order photoprotection mutants reveal the importance of \u394pH-dependent photosynthesis-control in preventing light induced damage to both photosystem II and photosystem I
Although light is essential for photosynthesis, when in excess, it may damage the photosynthetic
apparatus, leading to a phenomenon known as photoinhibition. Photoinhibition was thought as a
light-induced damage to photosystem II; however, it is now clear that even photosystem I may become
very vulnerable to light. One main characteristic of light induced damage to photosystem II (PSII) is
the increased turnover of the reaction center protein, D1: when rate of degradation exceeds the rate of
synthesis, loss of PSII activity is observed. With respect to photosystem I (PSI), an excess of electrons,
instead of an excess of light, may be very dangerous. Plants possess a number of mechanisms able
to prevent, or limit, such damages by safe thermal dissipation of light energy (non-photochemical
quenching, NPQ), slowing-down of electron transfer through the intersystem transport chain
(photosynthesis-control, PSC) in co-operation with the Proton Gradient Regulation (PGR) proteins,
PGR5 and PGRL1, collectively called as short-term photoprotection mechanisms, and the redistribution
of light between photosystems, called state transitions (responsible of fluorescence quenching at PSII,
qT), is superimposed to these short term photoprotective mechanisms. In this manuscript we have
generated a number of higher order mutants by crossing genotypes carrying defects in each of the
short-term photoprotection mechanisms, with the final aim to obtain a direct comparison of their role
and efficiency in photoprotection. We found that mutants carrying a defect in the \u394pH-dependent
photosynthesis-control are characterized by photoinhibition of both photosystems, irrespectively of
whether PSBS-dependent NPQ or state transitions defects were present or not in the same individual,
demonstrating the primary role of PSC in photoprotection. Moreover, mutants with a limited capability
to develop a strong PSBS-dependent NPQ, were characterized by a high turnover of the D1 protein and
high values of Y(NO), which might reflect energy quenching processes occurring within the PSII reaction
center
Higher order photoprotection mutants reveal the importance of ÎpH-dependent photosynthesis-control in preventing light induced damage to both photosystem II and photosystem I
Although light is essential for photosynthesis, when in excess, it may
damage the photosynthetic apparatus, leading to a phenomenon known as
photoinhibition. Photoinhibition was thought as a light-induced damage
to photosystem II; however, it is now clear that even photosystem I may
become very vulnerable to light. One main characteristic of light
induced damage to photosystem II (PSII) is the increased turnover of the
reaction center protein, D1: when rate of degradation exceeds the rate
of synthesis, loss of PSII activity is observed. With respect to
photosystem I (PSI), an excess of electrons, instead of an excess of
light, may be very dangerous. Plants possess a number of mechanisms able
to prevent, or limit, such damages by safe thermal dissipation of light
energy (non-photochemical quenching, NPQ), slowing-down of electron
transfer through the intersystem transport chain
(photosynthesis-control, PSC) in co-operation with the Proton Gradient
Regulation (PGR) proteins, PGR5 and PGRL1, collectively called as
short-term photoprotection mechanisms, and the redistribution of light
between photosystems, called state transitions (responsible of
fluorescence quenching at PSII, qT), is superimposed to these short term
photoprotective mechanisms. In this manuscript we have generated a
number of higher order mutants by crossing genotypes carrying defects in
each of the short-term photoprotection mechanisms, with the final aim
to obtain a direct comparison of their role and efficiency in
photoprotection. We found that mutants carrying a defect in the
ÎpH-dependent photosynthesis-control are characterized by
photoinhibition of both photosystems, irrespectively of whether
PSBS-dependent NPQ or state transitions defects were present or not in
the same individual, demonstrating the primary role of PSC in
photoprotection. Moreover, mutants with a limited capability to develop a
strong PSBS-dependent NPQ, were characterized by a high turnover of the
D1 protein and high values of Y(NO), which might reflect energy
quenching processes occurring within the PSII reaction center.</p
2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.
Correction to: 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology (2021) 166:3567â3579. https://doi.org/10.1007/s00705-021-05266-wIn March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through Laulima Government Solutions, LLC prime contract with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC under Contract No. HHSN272201800013C. This work was also supported in part with federal funds from the National Cancer Institute (NCI), National Institutes of Health (NIH), under Contract No. 75N91019D00024, Task Order No. 75N91019F00130 to I.C., who was supported by the Clinical Monitoring Research Program Directorate, Frederick National Lab for Cancer Research. This work was also funded in part by Contract No. HSHQDC-15-C-00064 awarded by DHS S&T for the management and operation of The National Biodefense Analysis and Countermeasures Center, a federally funded research and development center operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowledges partial support from the Special Research Initiative of Mississippi Agricultural and Forestry Experiment Station (MAFES), Mississippi State University, and the National Institute of Food and Agriculture, US Department of Agriculture, Hatch Project 1021494. Part of this work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001030), the UK Medical Research Council (FC001030), and the Wellcome Trust (FC001030).S
2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.
In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV
2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales
International audienc
Correction to: 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales
Unfortunately, the inclusion of original names (in non-Latin script) of the following authors caused problems with author name indexing in PubMed. Therefore, these original names were removed from XML data to correct the PubMed record. Mengji Cao, Yuya Chiaki, Hideki Ebihara, Jingjing Fu, George FĂș GÄo, Tong Han, Jiang Hong, Ni Hong, Seiji Hongo, Masayuki Horie, DĂ ohĂłng JiÄng, Fujio Kadono, Hideki KondĆ, Kenji Kubota, Shaorong Li, Longhui Li, JiĂ nrĂłng LÇ, Huazhen Liu, Tomohide Natsuaki, Sergey V. Netesov, Anna Papa, Sofia Paraskevopoulou, Liying Qi, Takahide Sasaya, Mang Shi, XiÇohĂłng ShĂ, ZhĂšnglĂŹ ShĂ, Yoshifumi Shimomoto, JinâWon Song, Ayato Takada, Shigeharu Takeuchi, Yasuhiro Tomitaka, KeizĆ Tomonaga, Shinya Tsuda, Changchun Tu, Tomio Usugi, Nikos Vasilakis, Jiro Wada, LinâFa Wang, Guoping Wang, Yanxiang Wang, Yaqin Wang, TĂ iyĂșn WĂši, Shaohua Wen, Jiangxiang Wu, Lei Xu, Hironobu Yanagisawa, Caixia Yang, Zuokun Yang, Lifeng Zhai, YongâZhen Zhang, Song Zhang, Jinguo Zhang, Zhe Zhang, Xueping Zhou. In addition, the publication call-out in the supplementary material was updated from issue 11 to issue 12. The original article has been corrected
2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales
In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV