3,343 research outputs found

    Isomeric and hybrid ferrocenyl/cyrhetrenylaldimines: a new family of multifunctional compounds

    Get PDF
    The synthesis and characterization of two novel and isomeric hybrid ferrocenyl/cyrhetrenyl aldimines [(η5-C5H5)Fe{(η5-C5H4)-CHvN-(η5-C5H4)}Re(CO)3] (1) and [(η5-C5H5)Fe{(η5-C5H4)-NvCH-(η5-C5H4)}Re (CO)3] (2) are reported. Their X-ray crystal structures reveal that both adopt the E form. However, molecules of 1 and 2 differ in the relative arrangement of the 'Fe(η5-C5H5)' and 'Re(CO)3' units (anti in 1 and syn in 2). This affects the type of intermolecular interactions, the assembly of the molecules and therefore their crystal architecture. Comparative studies of their electrochemical, spectroscopic and photo-physical properties have allowed us to clarify the effect produced by the location of the organometallic arrays (ferrocenyl or cyrhetrenyl) on electronic delocalization, the proclivity of the metals to undergo oxidation and their emissive properties. Theoretical studies based on Density Functional Theory (DFT) calculations on the two compounds have also been carried out in order to rationalize the experimental results and to assign the bands detected in their electronic spectra. The cytotoxic activities of compounds 1 and 2 against human adenocarcinoma cell lines [breast (MCF7 and MDA-MB-231) and colon (HCT-116)] reveal that imine 2 has a greater inhibitory growth effect than 1 and it is ca. 1.8 times more potent than cisplatin in the triple negative MDA-MB 231 and in the cisplatin resistant HCT-116 cell lines. A comparative study of their effect on the normal and non-tumour human skin fibroblast BJ cell lines is also reported

    Electrospun nanosized cellulose fibers using ionic liquids at room temperature

    Get PDF
    Aiming at replacing the noxious solvents commonly employed, ionic-liquid-based solvents have been recently explored as novel non-volatile and non-flammable media for the electrospinning of polymers. In this work, nanosized and biodegradable cellulose fibers were obtained by electrospinning at room temperature using a pure ionic liquid or a binary mixture of two selected ionic liquids. The electrospinning of 8 wt% cellulose in 1-ethyl-3-methylimidazolium acetate medium (a low viscosity and room temperature ionic liquid capable of efficiently dissolving cellulose) showed to produce electrospun fibers with average diameters within (470 ± 110) nm. With the goal of tailoring the surface tension of the spinning dope, a surface active ionic liquid was further added in a 0.10 : 0.90 mole fraction ratio. Electrospun cellulose fibers from the binary mixture composed of 1-ethyl-3-methylimidazolium acetate and 1-decyl-3-methylimidazolium chloride ionic liquids presented average diameters within (120 ± 55) nm. Scanning electron microscopy, X-ray diffraction analysis, nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric assays were used as core methods to evaluate the structural integrity, morphology and crystallinity of the raw, electrospun, and regenerated samples of cellulose. Moreover, the photoluminescence spectra of both raw and electrospun fibers were acquired, and compared, indicating that the cellulose emitting centers are not affected by the dissolution of cellulose in ionic liquids. Finally, the use of non-volatile solvents in electrospinning coupled to a water coagulation bath allows the recovery of the ionic fluid, and represents a step forward into the search of environmentally friendly alternatives to the conventional approaches

    The grapevine (Vitis vinifera) aquaporin VvNIP2;1 is a silicon channel localized at the plasma membrane highly expressed in roots

    Get PDF
    Silicon (Si) supplementation has been shown to improve plant tolerance to different stresses and its accumulation in the aerial organs is mediated by NIP2;1 aquaporins (Lsi channels) and Lsi2-type exporters in roots. In the present study, we tested the hypothesis that grapevine expresses a functional NIP2;1 that accounts for root Si uptake and, eventually, Si accumulation in leaves. Own-rooted grapevine cuttings of the cultivar Vinhão accumulated over 0.2 % Si (dw) in leaves when irrigated with 1.5 mM Si for one month, while Si was undetected in control leaves. Real-time PCR showed that VvNIP2;1 was highly expressed in roots and in green berries. The transient transformation of tobacco leaf epidermal cells mediated by Agrobacterium tumefaciens confirmed VvNIP2;1 localization at the plasma membrane. Transport experiments in oocytes showed that VvNIP2;1 mediates Si and arsenite uptake, whereas permeability studies revealed that VvNIP2;1 expressed in yeast is unable to transport water and glycerol. Si supplementation to pigmented grape cultured cells (cv. Gamay Freáux) had no impact on the total phenolic and anthocyanin content, as well as the growth rate and VvNIP2;1 expression. Long-term experiments should help determine the extent of Si uptake over time and if gapevine can benefit from Si fertilizationinfo:eu-repo/semantics/acceptedVersio

    A novel type of organometallic 2-R-2,4-dihydro- 1H-3,1-benzoxazine with R = [M(η5-C5H4)(CO)3] (M = Re or Mn) units. Experimental and computational studies of the effect of substituent R on ring-chain tautomerism

    Get PDF
    The syntheses, characterization, X-ray crystal structures, electrochemical properties and anticancer and 35 antichagasic activities of the first examples of 2-substituted 2,4-dihydro-1H-3,1-benzoxazines with 36 halfsandwich organometallic arrays, [M(η5-C5H4)(CO)3] (M = Re or Mn), at position-2 are described. 37 Experimental and computational studies based on DFT calculations on the open forms [Schiff bases of 38 general formulae R-CHvN-C6H4-2-CH2OH] (5), with R = ferrocenyl (a), phenyl (b), cyrhetrenyl (c) or 39 cymantrenyl (d), and their tautomeric forms (2-substituted 2,4-dihydro-1H-3,1 benzoxazines) 40 haveallowed us to establish the influence of substituents a-d and solvents on: (a) the extent of 41 tautomeric equilibria (5a-5d) ↔ (6a-6d) and (b) their electrochemical properties and the electronic 42 distribution on the open and closed forms. Despite the formal similarity between 6c and 6d, their 43 anticancer and antiparasitic activities are markedly different. Compound 6d is inactive in the HCT116, 44 MDA-MB231 and MCF7 cancer cell lines, but 6c shows moderate activity in the latter cell line, while 45 the Mn(I) complex (6d) is a more potent anti-Trypanosoma cruzi agent than its Re(I) analogue (6c)

    The impact of the addition of iodoform on the physicochemical properties of an epoxy-based endodontic sealer

    Get PDF
    Due to the low radiopacity of Sealer 26, iodoform is frequently empirically added to this sealer. Thus, the interference of this procedure with the physicochemical properties of Sealer 26 must be evaluated. OBJECTIVE: This study evaluated the influence of the addition of iodoform on setting time, flow, solubility, pH, and calcium release of an epoxy-based sealer. MATERIAL AND METHODS: The control group was pure Sealer 26, and the experimental groups were Sealer 26 added with 1.1 g, 0.55 g or 0.275 g of iodoform. Setting time evaluation was performed in accordance with the ASTM C266-03 speciflcation. The analysis of flow and solubility was in accordance with the ISO 6876-2001 speciflcation. For the evaluation of pH and calcium ion release, polyethylene tubes were filled with the materials and immersed in flasks with 10 ml of deionized water. After 24 h, 7, 14, 21, 28, and 45 days pH was measured. In 45 days, the calcium released was evaluated with an atomic absorption spectrophotometer. RESULTS: The addition of iodoform increased setting time in comparison with pure sealer (P<0.05). As for flow, solubility, and calcium release, the mixtures presented results similar to pure sealer (p>0.05). In the 24 h period, the mixture with 1.1 g and 0.55 g of iodoform showed lower pH than pure sealer and than sealer added with 0.275 g of iodoform (P<0.05). CONCLUSIONS: The iodoform added to Sealer 26 interferes with its setting time and solubility properties. Further studies are needed to address the clinical signiflcance of this interference

    Habitat fragmentation and the future structure of tree assemblages in a fragmented Atlantic forest landscape

    Get PDF
    The biodiversity value of human-modified landscapes has become a central question in the tropical forest conservation biology, yet the degree to which plant populations and communities are restructured in response to environmental change remains unclear. Here, we address tree species density in a fragmented Atlantic forest landscape to test the hypothesis that tree assemblages inhabiting edge-dominated forest habitats approach typical conditions of early successional systems. Seedlings and adults from 141 tree species were sampled across 39 0.1-ha plots: 19 in small fragments (55 % of all tree species exhibiting higher densities in small fragments than in mature forest, particularly pioneers (>60 % of all species). Seedlings and adults of these proliferating species differed from species exhibiting population declines in terms of wood density and seed size, respectively. Additionally, pioneers were more abundant than shade-tolerant species, as were hardwood species in the case of seedlings. Tree species showing highest population increases consisted largely of long-lived, light-demanding canopy species bearing soft or hardwood and small-to-medium-sized seeds. Tree assemblage structure also differed in terms of forest habitats with small forest fragments supporting few rare species, whereas the most rapidly proliferating species were much more widespread and abundant in fragments. However, 60 % of all adult pioneer species recorded in small fragments were not recorded as seedlings in this habitat type, although both seedling and adult assemblages were dominated by pioneer species. Edge-dominated tree assemblages are likely to experience long-term shifts toward greater dominance of long-lived, pioneer canopy species

    Earliest Results in the Use of Activated Composite Membranes for the Transport of Silver Ions from Aqueous Solutions

    Get PDF
    This paper presents the results concerning the first use of activated composite membranes (ACMs) for the facilitated transport of silver ions containing di-(2-ethylhexyl)-dithiophosphoric acid (DTPA) as the carrier. DTPA was immobilized by interfacial polymerization in a dense layer that was deposited in a porous layer, which was prepared on a nonwoven fabric support by phase inversion. The influence of fundamental parameters affecting the transport of silver ion as the carrier concentration in the membrane phase and stripping agent variation of the stripping solution have been studied. In the optimal conditions, the amount of silver transported across the ACMs was greater than 50%, whereas if the content of the carrier is modified, more than the 90% of the initial silver is removed from the feed phase

    Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient

    Get PDF
    We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide
    corecore