4,051 research outputs found

    Tornadoes in a Microchannel

    Full text link
    In non-dilute colloidal suspensions, gradients in particle volume fraction result in gradients in electrical conductivity and permittivity. An externally applied electric field couples with gradients in electrical conductivity and permittivity and, under some conditions, can result in electric body forces that drive the flow unstable forming vortices. The experiments are conducted in square 200 micron PDMS microfluidic channels. Colloidal suspensions consisted of 0.01 volume fraction of 2 or 3 micron diameter polystyrene particles in 0.1 mM Phosphate buffer and 409 mM sucrose to match particle-solution density. AC electric fields at 20 Hz and strength of 430 to 600 V/cm were used. We present a fluid dynamics video that shows the evolution of the particle aggregation and formation of vortical flow. Upon application of the field particles aggregate forming particle chains and three dimensional structures. These particles form rotating bands where the axis of rotation varies with time and can collide with other rotating bands forming increasingly larger bands. Some groups become vortices with a stable axis of rotation. Other phenomena showed include counter rotating vortices, colliding vortices, and non-rotating particle bands with internal waves

    Interactions among four parasite species in an amphipod population from Patagonia.

    Get PDF
    Parasites commonly share their hosts with specimens of the same or different parasite species, resulting in multiple parasites obtaining resources from the same host. This could potentially lead to conflicts between co-infecting parasites, especially at high infection intensities. In Pool Los Juncos (Patagonia, Argentina), the amphipod Hyalella patagonica is an intermediate host to three parasites that mature in birds (the acanthocephalan Pseudocorynosoma sp., and larval stages of two Cyclophyllidea cestodes), in addition to a microsporidian (Thelohania sp.), whose life cycle is unknown, but very likely to be monoxenous. The aim of this study was to describe interactions between these parasite species in their amphipod host population. Amphipods were collected monthly between June 2002 to January 2004 to assess parasite infection. Infection prevalence and mean intensity was greatest in larger male amphipods for all parasites species. We also found a positive association between Thelohania sp., and both Pseudocorynosoma sp. and Cyclophyllidea sp. 1 infections, though Pseudocorynosoma sp. and Cyclophyllidea sp. 1were negatively associated with each other. We conclude that contrasting associations between parasites species may be associated with competition for both, food intake and space in the haemocoel.Fil: Rauque Perez, Carlos Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación en Biodiversidad y Medioambiente; ArgentinaFil: Semenas, L.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación en Biodiversidad y Medioambiente; Argentin

    Lithium-Ion Battery End-of-Discharge Time Estimation and Prognosis based on Bayesian Algorithms and Outer Feedback Correction Loops: A Comparative Analysis

    Get PDF
    Battery energy systems are currently one of the most common power sources found in mobile electromechanical devices. In all these equipment, assuring the autonomy of the system requires to determine the battery state-of-charge (SOC) and predicting the end-of-discharge time with a high degree of accuracy. In this regard, this paper presents a comparative analysis of two well-known Bayesian estimation algorithms (Particle filter and Unscented Kalman filter) when used in combination with Outer Feedback Correction Loops (OFCLs) to estimate the SOC and prognosticate the discharge time of lithium-ion batteries. Results show that, on the one hand, a PF-based estimation and prognosis scheme is the method of choice if the model for the dynamic system is inexact to some extent; providing reasonable results regardless if used with or without OFCLs. On the other hand, if a reliable model for the dynamic system is available, a combination of an Unscented Kalman Filter (UKF) with OFCLs outperforms a scheme that combines PF and OFCLs.Battery energy systems are currently one of the most common power sources found in mobile electromechanical devices. In all these equipment, assuring the autonomy of the system requires to determine the battery state-of-charge (SOC) and predicting the end-of-discharge time with a high degree of accuracy. In this regard, this paper presents a comparative analysis of two well-known Bayesian estimation algorithms (Particle filter and Unscented Kalman filter) when used in combination with Outer Feedback Correction Loops (OFCLs) to estimate the SOC and prognosticate the discharge time of lithium-ion batteries. Results show that, on the one hand, a PF-based estimation and prognosis scheme is the method of choice if the model for the dynamic system is inexact to some extent; providing reasonable results regardless if used with or without OFCLs. On the other hand, if a reliable model for the dynamic system is available, a combination of an Unscented Kalman Filter (UKF) with OFCLs outperforms a scheme that combines PF and OFCLs

    ADSORPTION ESSAYS OF PALLADIUM IN MODIFIED SILICA GEL WITH THIOURONIUM GROUPS: EXPERIMENTAL AND THEORICAL STUDIES

    Get PDF
    Indexación: Web of Science; ScieloThe silylant 3-cloropropyltriethoxysilyl was anchored over silica gel in anhydrous conditions in order to react with thiourea to obtain modified silica gel with thiouronium. The aim to obtain an inorganic support that is able to hijack metals from the VIII group such as palladium. The product was characterized by Sbet and FTIR infrared spectroscopy. For the determination of the structure in the modified silica gel NMR spectra of silicon and carbon were preformed in solid state. The coordination form of the modified silica gel to the metal was studied computationally in the context of the DFT theory, using the ADF code. This was a collaborative work with "Fundación Chile" for the recuperation of precious metals from the mining industry.http://ref.scielo.org/gk7rm

    FuSSI-Net: Fusion of Spatio-temporal Skeletons for Intention Prediction Network

    Full text link
    Pedestrian intention recognition is very important to develop robust and safe autonomous driving (AD) and advanced driver assistance systems (ADAS) functionalities for urban driving. In this work, we develop an end-to-end pedestrian intention framework that performs well on day- and night- time scenarios. Our framework relies on objection detection bounding boxes combined with skeletal features of human pose. We study early, late, and combined (early and late) fusion mechanisms to exploit the skeletal features and reduce false positives as well to improve the intention prediction performance. The early fusion mechanism results in AP of 0.89 and precision/recall of 0.79/0.89 for pedestrian intention classification. Furthermore, we propose three new metrics to properly evaluate the pedestrian intention systems. Under these new evaluation metrics for the intention prediction, the proposed end-to-end network offers accurate pedestrian intention up to half a second ahead of the actual risky maneuver.Comment: 5 pages, 6 figures, 5 tables, IEEE Asilomar SS

    How the Emitted Size Distribution and Mixing State of Feldspar Affect Ice Nucleating Particles in a Global Model

    Get PDF
    The effect of aerosol particles on ice nucleation and, in turn, the formation of ice and mixed phase clouds is recognized as one of the largest sources of uncertainty in climate prediction. We apply an improved dust mineral specific aerosol module in the NASA GISS Earth System ModelE, which takes into account soil aggregates and their fragmentation at emission as well as the emission of large particles. We calculate ice nucleating particle concentrations from K-feldspar abundance for an active site parameterization for a range of activation temperatures and external and internal mixing assumption. We find that the globally averaged INP concentration is reduced by a factor of two to three, compared to a simple assumption on the size distribution of emitted dust minerals. The decrease can amount to a factor of five in some geographical regions. The results vary little between external and internal mixing and different activation temperatures, except for the coldest temperatures. In the sectional size distribution, the size range 24 micrometer contributes the largest INP number

    How the Assumed Size Distribution of Dust Minerals Affects the Predicted Ice Forming Nuclei

    Get PDF
    The formation of ice in clouds depends on the availability of ice forming nuclei (IFN). Dust aerosol particles are considered the most important source of IFN at a global scale. Recent laboratory studies have demonstrated that the mineral feldspar provides the most efficient dust IFN for immersion freezing and together with kaolinite for deposition ice nucleation, and that the phyllosilicates illite and montmorillonite (a member of the smectite group) are of secondary importance.A few studies have applied global models that simulate mineral specific dust to predict the number and geographical distribution of IFN. These studies have been based on the simple assumption that the mineral composition of soil as provided in data sets from the literature translates directly into the mineral composition of the dust aerosols. However, these tables are based on measurements of wet-sieved soil where dust aggregates are destroyed to a large degree. In consequence, the size distribution of dust is shifted to smaller sizes, and phyllosilicates like illite, kaolinite, and smectite are only found in the size range 2 m. In contrast, in measurements of the mineral composition of dust aerosols, the largest mass fraction of these phyllosilicates is found in the size range 2 m as part of dust aggregates. Conversely, the mass fraction of feldspar is smaller in this size range, varying with the geographical location. This may have a significant effect on the predicted IFN number and its geographical distribution.An improved mineral specific dust aerosol module has been recently implemented in the NASA GISS Earth System ModelE2. The dust module takes into consideration the disaggregated state of wet-sieved soil, on which the tables of soil mineral fractions are based. To simulate the atmospheric cycle of the minerals, the mass size distribution of each mineral in aggregates that are emitted from undispersed parent soil is reconstructed. In the current study, we test the null-hypothesis that simulating the presence of a large mass fraction of phyllosilicates in dust aerosols in the size range 2 m, in comparison to a simple model assumption where this is neglected, does not yield a significant effect on the magnitude and geographical distribution of the predicted IFN number. Results from sensitivity experiments are presented as well

    Occupational Health and Safety Prevention Plan in Water Treatment Plant

    Full text link
    The research was carried out at the "El Guarumo" drinking water plant located in Santa Ana, province of Manabí, Ecuador. The objective of the investigation was the proposal of a plan of prevention of occupational risks that allows the management of the labor risks in said plant. The main tools used were: survey, interview, checklist, LEST questionnaire for the diagnosis of the current situation in terms of working conditions, the risk identification matrix and the binary method of risk assessment. The main results obtained were the identification of the risks in their different categories, observing that the critical risk factors are related to the physical overexertion, the uncomfortable postures and the manual lifting of the load. Among the important risks are falling objects, skin contact with toxic substances and mental overwork, closely related to work pressures and job security? It was possible to carry out the proposal of preventive and corrective measures in order to properly manage the risks and contribute to the safety and health of the workers

    Oximetry signal processing identifies REM sleep-related vulnerability trait in asthmatic children

    Get PDF
    Rationale. The sleep-related factors that modulate the nocturnal worsening of asthma in children are poorly understood. This study addressed the hypothesis that asthmatic children have a REM sleep-related vulnerability trait that is independent of OSA. Methods. We conducted a retrospective cross-sectional analysis of pulse-oximetry signals obtained during REM and NREM sleep in control and asthmatic children (n=134). Asthma classification was based on preestablished clinical criteria. Multivariate linear regression model was built to control for potential confounders (significance level p ≤ 0.05). Results. Our data demonstrated that (1) baseline nocturnal respiratory parameters were not significantly different in asthmatic versus control children, (2) the maximal % of SaO2 desaturation during REM, but not during NREM, was significantly higher in asthmatic children, and (3) multivariate analysis revealed that the association between asthma and REM-related maximal % SaO2 desaturation was independent of demographic variables. Conclusion. These results demonstrate that children with asthma have a REM-related vulnerability trait that impacts oxygenation independently of OSA. Further research is needed to delineate the REM sleep neurobiological mechanisms that modulate the phenotypical expression of nocturnal asthma in children
    corecore