1,235 research outputs found

    Quintessence and the Underlying Particle Physics Theory

    Get PDF
    At present we know nothing about the nature of the dark energy accounting for about 70% of the energy density of the Universe. One possibility is that the dark energy is provided by an extremely light field, the quintessence, rolling down its potential. Even though the underlying particle theory responsible for the present quintessential behaviour of our Universe is unknown, such a theory is likely to have contact with supersymmetry, supergravity or (super)string theory. In these theories, there are plenty of scalar fields (moduli) which are gravitationally coupled to all the other degrees of freedom and have vacuum expectation values of the order of the Planck scale. We point out that, in theories which allow a consistent embedding of quintessence, the generic gravitational interaction of the moduli fields with the quintessence field gives rise to a contribution to the energy density from the moduli fields of the order of the critical energy density of the universe today. Furthermore, the interaction contribution can generically enhance the negativity of the equation of state.Comment: 16 pages, 1 figure; expanded discussion of generality; version to be published by PL

    Integrating Concepts of Artificial Intelligence in the EO4GEO Body of Knowledge

    Get PDF
    Ponència del XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, FranceThe EO4GEO Body of Knowledge (BoK) forms a structure of concepts and relationships between them, describing the domain of Earth Observation and Geo-Information (EO/GI). Each concept carries a short description, a list of key literature references and a set of associated skills which are used for job profiling and curriculum building. As the EO/GI domain is evolving continuously, the BoK needs regular updates with new concepts embodying new trends, and deprecating concepts which are not relevant anymore. This paper presents the inclusion of BoK concepts related to Artificial Intelligence. This broad field of knowledge has links to several applications in EO/GI. Its connection to concepts, already existing in the BoK, needs special attention. To perform a clean and structural integration of the cross-cutting domain of AI, first a separate cluster of AI concepts was created, which was then merged with the existing BoK. The paper provides examples of this integration with specific concepts and examples of training resources in which AI-related concepts are used. Although the presented structure already provides a good starting point, the positioning of AI within the EO/GI-focussed BoK needs to be further enhanced with the help of expert calls as part of the BoK update cycle

    bsb \to s Transitions in Family-dependent U(1)U(1)^\prime Models

    Full text link
    We analyze flavor-changing-neutral-current (FCNC) effects in the bsb\to s transitions that are induced by family non-universal U(1)U(1)' gauge symmetries. After systematically developing the necessary formalism, we present a correlated analysis for the ΔB=1,2\Delta B =1, 2 processes. We adopt a model-independent approach in which we only require family-universal charges for the first and second generations and small fermion mixing angles. We analyze the constraints on the resulting parameter space from BsBˉsB_s - \bar B_s mixing and the time-dependent CP asymmetries of the penguin-dominated Bd(π,ϕ,η,ρ,ω,f0)KSB_d \to (\pi, \phi, \eta', \rho, \omega, f_0)K_S decays. Our results indicate that the currently observed discrepancies in some of these modes with respect to the Standard Model predictions can be consistently accommodated within this general class of models.Comment: 36 pages, 11 figure

    Patterns and correlates of claims for brown bear damage on a continental scale

    Get PDF
    Wildlife damage to human property threatens human-wildlife coexistence. Conflicts arising from wildlife damage in intensively managed landscapes often undermine conservation efforts, making damage mitigation and compensation of special concern for wildlife conservation. However, the mechanisms underlying the occurrence of damage and claims at large scales are still poorly understood. Here, we investigated the patterns of damage caused by brown bears Ursus arctos and its ecological and socio-economic correlates at a continental scale. We compiled information about compensation schemes across 26 countries in Europe in 2005-2012 and analysed the variation in the number of compensated claims in relation to (i) bear abundance, (ii) forest availability, (iii) human land use, (iv) management practices and (v) indicators of economic wealth. Most European countries have a posteriori compensation schemes based on damage verification, which, in many cases, have operated for more than 30 years. On average, over 3200 claims of bear damage were compensated annually in Europe. The majority of claims were for damage to livestock (59%), distributed throughout the bear range, followed by damage to apiaries (21%) and agriculture (17%), mainly in Mediterranean and eastern European countries. The mean number of compensated claims per bear and year ranged from 0·1 in Estonia to 8·5 in Norway. This variation was not only due to the differences in compensation schemes; damage claims were less numerous in areas with supplementary feeding and with a high proportion of agricultural land. However, observed variation in compensated damage was not related to bear abundance. Synthesis and applications. Compensation schemes, management practices and human land use influence the number of claims for brown bear damage, while bear abundance does not. Policies that ignore this complexity and focus on a single factor, such as bear population size, may not be effective in reducing claims. To be effective, policies should be based on integrative schemes that prioritize damage prevention and make it a condition of payment of compensation that preventive measures are applied. Such integrative schemes should focus mitigation efforts in areas or populations where damage claims are more likely to occur. Similar studies using different species and continents might further improve our understanding of conflicts arising from wildlife damage

    The Sao Paulo Lightning Mapping Array (SPLMA): Prospects to GOES-R GLM and CHUVA

    Get PDF
    This paper presents the characteristics and prospects of a Lightning Mapping Array to be deployed at the city of S o Paulo (SPLMA). This LMA network will provide CHUVA campaign with total lightning, lightning channel mapping and detailed information on the locations of cloud charge regions for the thunderstorms investigated during one of its IOP. The real-time availability of LMA observations will also contribute to and support improved weather situational awareness and mission execution. For GOES-R program it will form the basis of generating unique and valuable proxy data sets for both GLM and ABI sensors in support of several on-going research investigation

    Cosmological Implications of Dynamical Supersymmetry Breaking

    Full text link
    We provide a taxonomy of dynamical supersymmetry breaking theories, and discuss the cosmological implications of the various types of models. Models in which supersymmetry breaking is produced by chiral superfields which only have interactions of gravitational strength (\eg\ string theory moduli) are inconsistent with standard big bang nucleosynthesis unless the gravitino mass is greater than \CO(3) \times 10^4 GeV. This problem cannot be solved by inflation. Models in which supersymmetry is dynamically broken by renormalizable interactions in flat space have no such cosmological problems. Supersymmetry can be broken either in a hidden or the visible sector. However hidden sector models suffer from several naturalness problems and have difficulties in producing an acceptably large gluino mass.Comment: 24 pages (uses harvmac) UCSD/PTH 93-26, RU-3

    Hadronic Axion Model in Gauge-Mediated Supersymmetry Breaking and Cosmology of Saxion

    Get PDF
    Recently we have proposed a simple hadronic axion model within gauge-mediated supersymmetry breaking. In this paper we discuss various cosmological consequences of the model in great detail. A particular attention is paid to a saxion, a scalar partner of an axion, which is produced as a coherent oscillation in the early universe. We show that our model is cosmologically viable, if the reheating temperature of inflation is sufficiently low. We also discuss the late decay of the saxion which gives a preferable power spectrum of the density fluctuation in the standard cold dark matter model when compared with the observation.Comment: 24 pages, 3 figure

    Quintessence models in Supergravity

    Get PDF
    Scalar field models of quintessence typically require that the expectation value of the field today is of order the Planck mass, if we want them to explain the observed acceleration of the Universe. This suggests that we should be considering models in the context of supergravity. We discuss a particular class of supergravity models and analyze their behavior under different choices of the Kahler metric.Comment: 6 pages, revised version to appear in PR

    False Vacuum Inflation with Einstein Gravity

    Full text link
    We investigate chaotic inflation models with two scalar fields, such that one field (the inflaton) rolls while the other is trapped in a false vacuum state. The false vacuum becomes unstable when the inflaton field falls below some critical value, and a first or second order transition to the true vacuum ensues. Particular attention is paid to Linde's second-order `Hybrid Inflation'; with the false vacuum dominating, inflation differs from the usual true vacuum case both in its cosmology and in its relation to particle physics. The spectral index of the adiabatic density perturbation can be very close to 1, or it can be around ten percent higher. The energy scale at the end of inflation can be anywhere between 101610^{16}\,GeV and 101110^{11}\,GeV, though reheating is prompt so the reheat temperature can't be far below 101110^{11}\,GeV. Topological defects are almost inevitably produced at the end of inflation, and if the inflationary energy scale is near its upper limit they can have significant effects. Because false vacuum inflation occurs with the inflaton field far below the Planck scale, it is easier to implement in the context of supergravity than standard chaotic inflation. That the inflaton mass is small compared with the inflationary Hubble parameter is still a problem for generic supergravity theories, but remarkably this can be avoided in a natural way for a class of supergravity models which follow from orbifold compactification of superstrings. This opens up the prospect of a truly realistic, superstringComment: 37 pages, LaTeX (3 figures available as hard copies only), SUSSEX-AST 94/1-

    Inflationary models with a flat potential enforced by non-abelian discrete gauge symmetries

    Get PDF
    Non-abelian discrete gauge symmetries can provide the inflaton with a flat potential even when one takes into account gravitational strength effects. The discreteness of the symmetries also provide special field values where inflation can end via a hybrid type mechanism. An interesting feature of this method is that it can naturally lead to extremely flat potentials and so, in principle, to inflation at unusually low energy scales. Two examples of effective field theories with this mechanism are given, one with a hybrid exit and one with a mutated hybrid exit. They include an explicit example in which the single field consistency condition is violated.Comment: 24 pages, uses revtex.sty, submitted to PRD (Nov. 1999) Final version to appear in PRD. Background information on supergravity expande
    corecore