8 research outputs found

    Guiding Lights in Genome Editing for Inherited Retinal Disorders: Implications for Gene and Cell Therapy

    No full text
    Inherited retinal dystrophies (IRDs) are a leading cause of visual impairment in the developing world. These conditions present an irreversible dysfunction or loss of neural retinal cells, which significantly impacts quality of life. Due to the anatomical accessibility and immunoprivileged status of the eye, ophthalmological research has been at the forefront of innovative and advanced gene- and cell-based therapies, both of which represent great potential as therapeutic treatments for IRD patients. However, due to a genetic and clinical heterogeneity, certain IRDs are not candidates for these approaches. New advances in the field of genome editing using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas) have provided an accurate and efficient way to edit the human genome and represent an appealing alternative for treating IRDs. We provide a brief update on current gene augmentation therapies for retinal dystrophies. Furthermore, we discuss recent advances in the field of genome editing and stem cell technologies, which together enable precise and personalized therapies for patients. Lastly, we highlight current technological limitations and barriers that need to be overcome before this technology can become a viable treatment option for patients

    Generation of a human iPSC line, INMi002-A, carrying the most prevalent USH2A variant associated with Usher syndrome type 2

    No full text
    International audienceWe generated an induced pluripotent stem cell (iPSC) line using dermal fibroblasts from a patient with Usher syndrome type 2 (USH2). This individual was homozygous for the most prevalent variant reported in the USH2A gene, c.2299delG localized in exon 13. Reprogramming was performed using the non-integrative Sendai virus reprogramming method and the human OSKM transcription factor cocktail under feeder-free culture conditions. This iPSC line will be an invaluable tool for studying the pathophysiology of USH2 and for testing the efficacy of novel treatments

    Generation of an iPSC line, INMi001-A, carrying the two most common USH2A mutations from a compound heterozygote with non-syndromic retinitis pigmentosa

    No full text
    We generated an induced pluripotent stem cell (iPSC) line from a patient with non-syndromic retinitis pigmentosa who is a compound heterozygote for the two most frequent USH2A variants, c.2276G > T and c.2299delG localized in exon 13. Patient fibroblasts were reprogrammed using the non-integrative Sendai virus reprogramming method and the human OSKM transcription factor cocktail. The generated cells were pluripotent and genetically stable. This iPSC line will be an important tool for studying the pathogenesis of these USH2A mutations and for developing treatments that, due their high prevalence, will target a large patient population

    Genome Editing in Patient iPSCs Corrects the Most Prevalent USH2A Mutations and Reveals Intriguing Mutant mRNA Expression Profiles

    No full text
    International audienceInherited retinal dystrophies (IRDs) are characterized by progressive photoreceptor degeneration and vision loss. Usher syndrome (USH) is a syndromic IRD characterized by retinitis pigmentosa (RP) and hearing loss. USH is clinically and genetically heterogeneous, and the most prevalent causative gene is USH2A. USH2A mutations also account for a large number of isolated autosomal recessive RP (arRP) cases. This high prevalence is due to two recurrent USH2A mutations, c.2276G>T and c.2299delG. Due to the large size of the USH2A cDNA, gene augmentation therapy is inaccessible. However, CRISPR/Cas9-mediated genome editing is a viable alternative. We used enhanced specificity Cas9 of Streptococcus pyogenes (eSpCas9) to successfully achieve seamless correction of the two most prevalent USH2A mutations in induced pluripotent stem cells (iPSCs) of patients with USH or arRP. Our results highlight features that promote high target efficacy and specificity of eSpCas9. Consistently, we did not identify any off-target mutagenesis in the corrected iPSCs, which also retained pluripotency and genetic stability. Furthermore, analysis of USH2A expression unexpectedly identified aberrant mRNA levels associated with the c.2276G>T and c.2299delG mutations that were reverted following correction. Taken together, our efficient CRISPR/Cas9-mediated strategy for USH2A mutation correction brings hope for a potential treatment for USH and arRP patients

    USH2A variants causing retinitis pigmentosa or Usher syndrome provoke differential retinal phenotypes in disease-specific organoids

    No full text
    Summary: There is an emblematic clinical and genetic heterogeneity associated with inherited retinal diseases (IRDs). The most common form is retinitis pigmentosa (RP), a rod-cone dystrophy caused by pathogenic variants in over 80 different genes. Further complexifying diagnosis, different variants in individual RP genes can also alter the clinical phenotype. USH2A is the most prevalent gene for autosomal-recessive RP and one of the most challenging because of its large size and, hence, large number of variants. Moreover, USH2A variants give rise to non-syndromic and syndromic RP, known as Usher syndrome (USH) type 2, which is associated with vision and hearing loss. The lack of a clear genotype-phenotype correlation or prognostic models renders diagnosis highly challenging. We report here a long-awaited differential non-syndromic RP and USH phenotype in three human disease-specific models: fibroblasts, induced pluripotent stem cells (iPSCs), and mature iPSC-derived retinal organoids. Moreover, we identified distinct retinal phenotypes in organoids from multiple RP and USH individuals, which were validated by isogenic-corrected controls. Non-syndromic RP organoids showed compromised photoreceptor differentiation, whereas USH organoids showed a striking and unexpected cone phenotype. Furthermore, complementary clinical investigations identified macular atrophy in a high proportion of USH compared with RP individuals, further validating our observations that USH2A variants differentially affect cones. Overall, identification of distinct non-syndromic RP and USH phenotypes in multiple models provides valuable and robust readouts for testing the pathogenicity of USH2A variants as well as the efficacy of therapeutic approaches in complementary cell types

    A Novel Chromosomal Translocation Identified due to Complex Genetic Instability in iPSC Generated for Choroideremia

    No full text
    International audienceInduced pluripotent stem cells (iPSCs) have revolutionized the study of human diseases as they can renew indefinitely, undergo multi-lineage differentiation, and generate disease-specific models. However, the difficulty of working with iPSCs is that they are prone to genetic instability. Furthermore, genetically unstable iPSCs are often discarded, as they can have unforeseen consequences on pathophysiological or therapeutic read-outs. We generated iPSCs from two brothers of a previously unstudied family affected with the inherited retinal dystrophy choroideremia. We detected complex rearrangements involving chromosomes 12, 20 and/or 5 in the generated iPSCs. Suspecting an underlying chromosomal aberration, we performed karyotype analysis of the original fibroblasts, and of blood cells from additional family members. We identified a novel chromosomal translocation t(12;20)(q24.3;q11.2) segregating in this family. We determined that the translocation was balanced and did not impact subsequent retinal differentiation. We show for the first time that an undetected genetic instability in somatic cells can breed further instability upon reprogramming. Therefore, the detection of chromosomal aberrations in iPSCs should not be disregarded, as they may reveal rearrangements segregating in families. Furthermore, as such rearrangements are often associated with reproductive failure or birth defects, this in turn has important consequences for genetic counseling of family members

    Defects in the Cell Signaling Mediator β-Catenin Cause the Retinal Vascular Condition FEVR

    No full text
    Familial exudative vitreoretinopathy (FEVR) is an inherited blinding disorder characterized by the abnormal development of the retinal vasculature. The majority of mutations identified in FEVR are found within four genes that encode the receptor complex (FZD4, LRP5, and TSPAN12) and ligand (NDP) of a molecular pathway that controls angiogenesis, the Norrin-β-catenin signaling pathway. However, half of all FEVR-affected case subjects do not harbor mutations in these genes, indicating that further mutated genes remain to be identified. Here we report the identification of mutations in CTNNB1, the gene encoding β-catenin, as a cause of FEVR. We describe heterozygous mutations (c.2142_2157dup [p.His720∗] and c.2128C>T [p.Arg710Cys]) in two dominant FEVR-affected families and a de novo mutation (c.1434_1435insC [p.Glu479Argfs∗18]) in a simplex case subject. Previous studies have reported heterozygous de novo CTNNB1 mutations as a cause of syndromic intellectual disability (ID) and autism spectrum disorder, and somatic mutations are linked to many cancers. However, in this study we show that Mendelian inherited CTNNB1 mutations can cause non-syndromic FEVR and that FEVR can be a part of the syndromic ID phenotype, further establishing the role that β-catenin signaling plays in the development of the retinal vasculature
    corecore