1,976 research outputs found

    An improved tabu-based vector optimal algorithm for design optimizations of electromagnetic devices

    Get PDF
    Author name used in this publication: S. Y. YangAuthor name used in this publication: S. L. HoAuthor name used in this publication: J. M. MachadoAuthor name used in this publication: Edward W. C. Lo2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Non-Occlusive Retinal Vascular Inflammation and Role of Red Blood Cell Deformability in Birdshot Chorioretinopathy

    Get PDF
    PURPOSE: To investigate differences in red blood cell (RBC) deformability between birdshot chorioretinopathy (BCR) subjects and matched controls, and to postulate its relationship with lack of vascular occlusion in BCR. METHODS: In a single center, prospective, non-randomized mechanistic study, blood samples were collected from eight healthy controls and nine BCR patients, and subjected to biochemical and hematological tests, as well as RBC indices assessment using dual-beam optical tweezers. RESULTS: The mean age of the controls was 52.37 ± 10.70 years and BCR patients was 53.44 ± 12.39 years. Initial cell size (Io) for the controls was 8.48 ± 0.25 μm and 8.87 ± 0.31 μm for BCR RBCs (p = 0.014). The deformability index (DI) for the controls was 0.066 ± 0.02 and that for BCR RBCs was 0.063 ± 0.03 (p = 0.441). CONCLUSION: There was no statistically significant difference in DI between RBCs from BCR and healthy controls. This may explain the rare occurrence of retinal vascular occlusion despite the underlying vasculitic pathophysiology of BCR

    Genes Suggest Ancestral Colour Polymorphisms Are Shared across Morphologically Cryptic Species in Arctic Bumblebees

    Get PDF
    email Suzanne orcd idCopyright: © 2015 Williams et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Holography at an Extremal De Sitter Horizon

    Full text link
    Rotating maximal black holes in four-dimensional de Sitter space, for which the outer event horizon coincides with the cosmological horizon, have an infinite near-horizon region described by the rotating Nariai metric. We show that the asymptotic symmetry group at the spacelike future boundary of the near-horizon region contains a Virasoro algebra with a real, positive central charge. This is evidence that quantum gravity in a rotating Nariai background is dual to a two-dimensional Euclidean conformal field theory. These results are related to the Kerr/CFT correspondence for extremal black holes, but have two key differences: one of the black hole event horizons has been traded for the cosmological horizon, and the near-horizon geometry is a fiber over dS_2 rather than AdS_2.Comment: 15 page

    A de Sitter Hoedown

    Full text link
    Rotating black holes in de Sitter space are known to have interesting limits where the temperatures of the black hole and cosmological horizon are equal. We give a complete description of the thermal phase structure of all allowed rotating black hole configurations. Only one configuration, the rotating Nariai limit, has the black hole and cosmological horizons both in thermal and rotational equilibrium, in that both the temperatures and angular velocities of the two horizons coincide. The thermal evolution of the spacetime is shown to lead to the pure de Sitter spacetime, which is the most entropic configuration. We then provide a comprehensive study of the wave equation for a massless scalar in the rotating Nariai geometry. The absorption cross section at the black hole horizon is computed and a condition is found for when the scattering becomes superradiant. The boundary-to-boundary correlators at finite temperature are computed at future infinity. The quasinormal modes are obtained in explicit form. Finally, we obtain an expression for the expectation value of the number of particles produced at future infinity starting from a vacuum state with no incoming particles at past infinity. Some of our results are used to provide further evidence for a recent holographic proposal between the rotating Nariai geometry and a two-dimensional conformal field theory.Comment: 35 + 1 pages, 9 figures; v3: typos correcte

    Dynamical Boson Stars

    Full text link
    The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called {\em geons}, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name {\em boson stars}. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in Relativity; major revision in 201

    Nematode and Arthropod Genomes Provide New Insights into the Evolution of Class 2 B1 GPCRs

    Get PDF
    Nematodes and arthropods are the most speciose animal groups and possess Class 2 B1 G-protein coupled receptors (GPCRs). Existing models of invertebrate Class 2 B1 GPCR evolution are mainly centered on Caenorhabditis elegans and Drosophila melanogaster and a few other nematode and arthropod representatives. The present study reevaluates the evolution of metazoan Class 2 B1 GPCRs and orthologues by exploring the receptors in several nematode and arthropod genomes and comparing them to the human receptors. Three novel receptor phylogenetic clusters were identified and designated cluster A, cluster B and PDF-R-related cluster. Clusters A and B were identified in several nematode and arthropod genomes but were absent from D. melanogaster and Culicidae genomes, whereas the majority of the members of the PDF-R-related cluster were from nematodes. Cluster A receptors were nematode and arthropod-specific but shared a conserved gene environment with human receptor loci. Cluster B members were orthologous to human GCGR, PTHR and Secretin members with which they probably shared a common origin. PDF-R and PDF-R related clusters were present in representatives of both nematodes and arthropods. The results of comparative analysis of GPCR evolution and diversity in protostomes confirm previous notions that C. elegans and D. melanogaster genomes are not good representatives of nematode and arthropod phyla. We hypothesize that at least four ancestral Class 2 B1 genes emerged early in the metazoan radiation, which after the protostome-deuterostome split underwent distinct selective pressures that resulted in duplication and deletion events that originated the current Class 2 B1 GPCRs in nematode and arthropod genomes.This work was supported by the Portuguese Foundation for Science and Technology (FCT) project PTDC/BIA-BCM/114395/2009, by the European Regional Development Fund through COMPETE and FCT under the project ‘‘PEst-C/MAR/LA0015/2011.’’ RCF is in receipt of an FCT grant (SFRH/BPD/89811/2012) and JCRC is supported by auxiliary research contract FCT Pluriannual funds attributed to CCMAR. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Bortezomib/docetaxel combination therapy in patients with anthracycline-pretreated advanced/metastatic breast cancer: a phase I/II dose-escalation study

    Get PDF
    The aim of this study was to determine the dose-limiting toxicities (DLTs) and maximum tolerated dose (MTD) of bortezomib plus docetaxel in patients with anthracycline-pretreated advanced/metastatic breast cancer. Forty-eight patients received up to eight 21-day cycles of docetaxel (60–100 mg m−2 on day 1) plus bortezomib (1.0–1.5 mg m−2 on days 1, 4, 8, and 11). Pharmacodynamic and pharmacokinetic analyses were performed in a subset of patients. Five patients experienced DLTs: grade 3 bone pain (n=1) and febrile neutropenia (n=4). The MTD was bortezomib 1.5 mg m−2 plus docetaxel 75 mg m−2. All 48 patients were assessable for safety and efficacy. The most common adverse events were diarrhoea, nausea, alopecia, asthenia, and vomiting. The most common grade 3/4 toxicities were neutropenia (44%), and febrile neutropenia and diarrhoea (each 19%). Overall patient response rate was 29%. Median time to progression was 5.4 months. In patients with confirmed response, median time to response was 1.3 months and median duration of response was 3.2 months. At the MTD, response rate was 38%. Pharmacokinetic characteristics of bortezomib/docetaxel were comparable with single-agent data. Addition of docetaxel appeared not to affect bortezomib inhibition of 20S proteasome activity. Mean alpha-1 acid glycoprotein concentrations increased from baseline at nearly all time points across different bortezomib dose levels. Bortezomib plus docetaxel is an active combination for anthracycline-pretreated advanced/metastatic breast cancer. The safety profile is manageable and consistent with the side effects of the individual agents
    corecore