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An Improved Tabu-Based Vector Optimal Algorithm
for Design Optimizations of Electromagnetic Devices

S. Y. Yang, J. R. Cardoso, S. L. Ho, P. H. Ni, J. M. Machado, and Edward W. C. Lo

Abstract—This paper introduces an improved tabu-based vector
optimal algorithm for multiobjective optimal designs of electro-
magnetic devices. The improvements include a division of the en-
tire search process, a new method for fitness assignment, a novel
scheme for the generation and selection of neighborhood solutions,
and so forth. Numerical results on a mathematical function and
an engineering multiobjective design problem demonstrate that
the proposed method can produce virtually the exact Pareto front,
in both parameter and objective spaces, even though the itera-
tion number used by it is only about 70% of that required by its
ancestor.

Index Terms—Multiobjective optimization, nondominated
sorting, Pareto solution, tabu search, vector optimization.

I. INTRODUCTION

RECENTLY, researches in multiobjective or vector
optimizations have become very topical for both sci-

entists and engineers because real world design problems
are inevitably multiobjective in nature. However, despite the
significant progresses in the development of multiobjective
optimal algorithms, the robustness and efficiency of available
vector optimal methods are still unsatisfactory; hence, there are
still many open problems yet to be solved [1]. Moreover, most
of the researches on multiobjective designs have focused on
evolutionary algorithms only. Extensive researches reveal that
the performances of evolutionary algorithms are often over-
shadowed by local search methods such as simulated annealing
or tabu search methods [2]. Thus, an improved vector optimal
method to enhance robustness and efficiency of a tabu-based
algorithm [3] is proposed.

The most common concepts/terminologies used in this paper
are already defined in [3] with the exception of weakly and
strongly nondominated solutions. Consider the following mini-
mization problem which is written in a shortened form as:
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(2)
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where

where is a weakly nondominated solution if there is no
, such that for ; on the

other hand, is a strongly nondominated solution if there is no
, such that for

and for at least one index of , such that . Ob-
viously, if is strongly nondominated, it is also weakly non-
dominated. The strongly and weakly nondominated solutions
constitute the total Pareto front of a multiobjective optimization
problem.

II. IMPROVED TABU-BASED VECTOR OPTIMAL METHOD

The tabu-based algorithm proposed by the authors in [3] is
very robust in finding the Pareto solution of multiobjective op-
timal problems. To further enhance the robustness and the ef-
ficiency of the algorithm, some novel improvements are intro-
duced in this paper. Due to space limitation, only those improve-
ments which are not included in [3] are described.

A. Diversification and Intensification Phases

In general, an ideal solver for multiobjective optimization
problems should have the following features: 1) to efficiently
find the Pareto solutions, and 2) to uniformly sample the
Pareto-optimal front, i.e., to maintain the diversity of the
searched Pareto solutions. To achieve the first goal, the algo-
rithm should reinforce the moves that incorporate the merits of
the Pareto solutions found in the previous search process. To
obtain the second objective, the search process should also drive
the search into unexplored regions to sample the Pareto front
uniformly. In other words, an ideal multiobjective method is the
best compromise of the intensifying and diversifying searching
processes. Accordingly, the search process of the proposed
algorithm is divided into two phases, i.e., an intensification and
a diversification phase. Once a solution is identified as a new
Pareto solution, an intensifying search around the specified
point using a gradient-based Newton method is activated to
quickly search for better or new Pareto solutions. The algorithm
will continue in this phase until a transition criterion is satisfied,
and the algorithm will then switch into the diversification phase
for the next iterative cycle. To evaluate the gradient information
needed by the local search method which is not available for
general optimization problems, the response surface model
using the moving least-squares approximation as reported in
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[4] is used to reconstruct the Pareto front (surface) around the
specific point.

B. Assigning Fitness Value for New States

It is well known that in the selection of new current points for
a tabu search method, it is necessary to obtain the objective func-
tion values of their neighborhood solutions. As the objective
function in a multiobjective optimization problem is a vector,
some scalarization techniques must be used. Thus, in our earlier
work [3], the ranking method is extended and used to evaluate
the “fitness” of a solution. Extensive computer simulations show
that after the introduction of the fitness sharing function, espe-
cially in both parameter and objective spaces, which are used
to preserve the diversity of the searched Pareto solutions, there
are cases that the total fitness value of a dominated solution is
larger than that of a Pareto solution, if the point density of the
dominated solution is much smaller than that of the Pareto so-
lution. Hence, the dominated solution will be accepted as a new
current one to begin a new iteration, thereby leading to an inef-
ficient algorithm. To overcome this shortcoming of the ranking
approach, the nondominated sorting technique is improved and
used in the proposed algorithm to decide the “fitness” value of a
neighborhood solution [5]. The general procedure for assigning
the fitness value of a neighborhood solution in the proposed al-
gorithm is described as:

Algorithm:

Assign fitness values using the nondominated sorting.
Choose a large dummy fitness value v�t. Find the non-

dominated individuals among the neighborhood solution using
solutions in both the neighborhood and the Pareto-optimal
archive [3], set the fitness value of the found solutions to v�t;

Repeat
v�t = � v�t;
Find the nondominated individuals among the
neighborhood solutions whose fitness values are not set;
Set the fitness value of the solutions just found to v�t;

Until fitness values of all neighborhood solutions are set.

The initial value of the fitness value, , and the decreasing
rate, , in the proposed algorithm are, respectively, set to 3, and

, so as to guarantee that the fitness value of a Pareto-optimal
solution is always higher than that of a dominated individual
despite the introduction of fitness sharing functions in both pa-
rameter and objective spaces.

C. Fitness Sharing Function

To produce a uniform distribution of the searched Pareto so-
lutions not only in the objective but also in the parameter spaces,
the fitness-sharing concept is introduced. In order to reduce the
implementation complexity, a simple fitness-sharing function as
defined below is proposed. Mathematically, the fitness sharing
function is

(3)

where is the point density of the Pareto op-
timal obtained around the specified point in the space,
is the number of the total neighborhood solutions of and
and are, respectively, the objective and parameter spaces.

To compute the density of the Pareto optimal for a specified
point, a hyperbox with the point as the center is constructed,
and the number of the Pareto solutions lying in this box is used
as a measure of its fitness-sharing function. The fitness value
of a neighborhood solution is the sum of its fitness and
fitness-sharing function values, i.e.,

(4)

D. Generation and Selection of Neighborhood Solutions

Unlike the common procedure that generates the total number
of neighborhood solutions and then chooses the best one as
the new current solution, the proposed algorithm will accept a
new neighborhood solution if its total fitness value is not worse
than that of the current one, irrespective of whether the number
of neighborhood solutions generated so far during the neigh-
borhood generating process has reached or not. This will
lead to a reduction in the number of total function evaluations.
Moreover, to maintain the diversity of the searched Pareto so-
lutions, the number of neighborhood solutions generated in the
th neighborhood of the current solution is proportional to the

step length of its neighbor.

E. Transition Between Intensi- and Diversification Phases

The proposed algorithm will start from the diversification
phase. Once a new Pareto solution is identified, the algorithm
will automatically switch to the intensification phase to inten-
sify the search around the specific point. The algorithm will
continue in this phase until either there is no further possible
improvement on the specific point, or there is no other Pareto
solution found around the specific point.

F. Algorithm Description

Based on the previous description, it is now possible to give
a schematic explanation of the proposed algorithm as follows.

1) Start the diversification phase—if a new Pareto solution
has been found, switch to the intensification phase.

2) Start the intensification phase—the algorithm continues
in this phase until no further improvement can be made
on the specific point, or no other Pareto solutions can be
found around the specific point.

3) Termination test—if the test is passed, stop; otherwise go
to (1) to begin the next iteration.

III. NUMERICAL EXAMPLES

A. Numerical Validation

To explore and demonstrate the applicability of the proposed
algorithm to study standard multiobjective optimal problems,
it is first used to solve a mathematical test function which is
well designed and used by other researchers for evaluating the
robustness and performance of vector optimizers by comparing
the numerical solutions with their corresponding analytical ones
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Fig. 1. Comparison of the searched Pareto solutions with the analytical ones
in the parameter space for the mathematical function.

Fig. 2. Searched Pareto surfaces in the objective space for the mathematical
function.

[6]. The test function is a three-objective two-decision variable
problem, and is defined as

(5)

The equations of the Pareto front for this mathematical func-
tion in the parameter spaces are

(6)

The computed Pareto front of the proposed algorithm in
the parameter and objective spaces are shown, respectively,
in Figs. 1 and 2. It is obvious that the proposed algorithm
has the ability to find the exact Pareto optimal. It could also
sample the Pareto front uniformly in both the parameter and
objective spaces. In order to demonstrate the necessity of the
fitness sharing function in both parameter and objective spaces,
other things being equal, the proposed algorithm is modified
by excluding deliberately the fitness-sharing function in the
parameter space, and the aforementioned mathematical func-
tion is solved again. The searched Pareto solutions obtained

Fig. 3. Comparison of the searched Pareto solution with the analytical ones in
the parameter space using the proposed algorithm without the fitness sharing in
the parameter space for the mathematical function.

Fig. 4. Searched Pareto solutions of a 300-MW 20-pole hydrogenerator.

by using this modified algorithm in the parameter space are
illustrated in Fig. 3. It can be seen that the use of a sharing
procedure in only one of the two spaces cannot guarantee a
satisfactory approximation of the Pareto-optimal front in the
other space.

B. Case Study

The geometrical optimal design of the multisectional pole
arcs of large hydrogenerators as reported in [3] is solved by
using the proposed method to demonstrate its efficiency and ro-
bustness in solving a real word multiobjective optimal design
problem. Mathematically, the problem is formulated as

(7)

where is the amplitude of the fundamental component of
the flux density in the air gap, is the distortion factor of a si-
nusoidal voltage of the machine under no-load condition, THF
is the abbreviation for telephone harmonic factor, is the di-
rect axis transient reactance of the generator, and SCR is the
abbreviation for short circuit ratio.

The corresponding geometrical parameters to be optimized
are the center positions and radii of the multisectional arcs of the
pole shoes. The searched Pareto solutions for the optimal design
of multisectional pole arcs of a 300-MW 20-pole hydrogener-
ator using the proposed algorithm, together with those of [3], are
shown in Fig. 4. The corresponding iterative numbers used by
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Fig. 5. Searched Pareto solutions of a 300-MW 44-pole hydrogenerator.

TABLE I
ITERATIVE NUMBERS OF DIFFERENT METHODS

the two methods are given in Table I. To further validate the pro-
posed algorithm, the proposed algorithm is employed to study
the multisectional pole arc design of another 300-MW 44-pole
hydro-generator. The computed Pareto solutions are shown in
Fig. 5. Also, the iterative numbers of the two different methods
for this example are outlined in Table I. From these two numer-
ical examples, one can see that for the geometrical optimal de-
signs of the multisectional pole arcs of large hydro-generators,
the Pareto fronts searched by the two algorithms, i.e., one with
and another without the improvements proposed in this paper,
are virtually the same and are equally uniformly distributed in
the objective spaces. However, the iterative number used by the
proposed method is significantly less than that required by the
original one. It should also be noted that, for a general optimal
design problem, the reduction in computational time is not as
significant as that in the number of iterations when considering
the complication in the algorithm procedure, since the searching
process of the proposed algorithm is divided into two phases.
However, one should also keep in mind that, for solutions of
electromagnetic inverse problems, almost all the computational

time is consumed by the computational procedure of the elec-
tromagnetic fields. For example, the ratio between the reduction
in iteration numbers and that for the computational time for the
proposed algorithm for the case being studied is 1.05.

IV. CONCLUSION

As a continuation of earlier research by the authors, some new
improvements to enhance both the robustness and the efficiency
of a tabu-based algorithm for searching the Pareto solutions of
vector optimal design problems are proposed. Two numerical
examples are solved to demonstrate the applicability of the pro-
posed method on standard and practical multiobjective optimal
design problems. The computational results reveal that: 1) the
computed Pareto solutions of the proposed algorithm are nearly
identical to that obtained analytically, and the solutions from the
proposed algorithm are distributed uniformly in both parameter
and objective spaces; 2) the Pareto fronts searched by the two
algorithms, i.e., one with and one without the improvements as
reported in this paper, are almost the same, while the iterative
number used by the proposed method is significantly less than
that required by the original one; 3) a sharing procedure in only
one of the two spaces cannot guarantee a satisfactory approx-
imation of the Pareto-optimal front in the other space; 4) the
proposed algorithm is however more complicated in computer
implementations when compared with its ancestor.
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