5,125 research outputs found
The Supernova Remnant W44: confirmations and challenges for cosmic-ray acceleration
The middle-aged supernova remnant (SNR) W44 has recently attracted attention
because of its relevance regarding the origin of Galactic cosmic-rays. The
gamma-ray missions AGILE and Fermi have established, for the first time for a
SNR, the spectral continuum below 200 MeV which can be attributed to neutral
pion emission. Confirming the hadronic origin of the gamma-ray emission near
100 MeV is then of the greatest importance. Our paper is focused on a global
re-assessment of all available data and models of particle acceleration in W44,
with the goal of determining on a firm ground the hadronic and leptonic
contributions to the overall spectrum. We also present new gamma-ray and CO
NANTEN2 data on W44, and compare them with recently published AGILE and Fermi
data. Our analysis strengthens previous studies and observations of the W44
complex environment and provides new information for a more detailed modeling.
In particular, we determine that the average gas density of the regions
emitting 100 MeV - 10 GeV gamma-rays is relatively high (n= 250 - 300 cm^-3).
The hadronic interpretation of the gamma-ray spectrum of W44 is viable, and
supported by strong evidence. It implies a relatively large value for the
average magnetic field (B > 10^2 microG) in the SNR surroundings, sign of field
amplification by shock-driven turbulence. Our new analysis establishes that the
spectral index of the proton energy distribution function is p1 = 2.2 +/- 0.1
at low energies and p2 = 3.2 +/- 0.1 at high energies. We critically discuss
hadronic versus leptonic-only models of emission taking into account
simultaneously radio and gamma-ray data. We find that the leptonic models are
disfavored by the combination of radio and gamma-ray data. Having determined
the hadronic nature of the gamma-ray emission on firm ground, a number of
theoretical challenges remains to be addressed.Comment: 13 pages, 11 figures, accepted by A&
Investigating the high-frequency spectral features of SNRs Tycho, W44 and IC443 with the Sardinia Radio Telescope
The main characteristics in the radio continuum spectra of Supernova Remnants
(SNRs) result from simple synchrotron emission. In addition, electron
acceleration mechanisms can shape the spectra in specific ways, especially at
high radio frequencies. These features are connected to the age and the
peculiar conditions of the local interstellar medium interacting with the SNR.
Whereas the bulk radio emission is expected at up to GHz, sensitive
high-resolution images of SNRs above 10 GHz are lacking and are not easily
achievable, especially in the confused regions of the Galactic Plane. In the
framework of the early science observations with the Sardinia Radio Telescope
in February-March 2016, we obtained high-resolution images of SNRs Tycho, W44
and IC443 that provided accurate integrated flux density measurements at 21.4
GHz: 8.8 0.9 Jy for Tycho, 25 3 Jy for W44 and 66 7 Jy for
IC443. We coupled the SRT measurements with radio data available in the
literature in order to characterise the integrated and spatially-resolved
spectra of these SNRs, and to find significant frequency- and region-dependent
spectral slope variations. For the first time, we provide direct evidence of a
spectral break in the radio spectral energy distribution of W44 at an
exponential cutoff frequency of 15 2 GHz. This result constrains the
maximum energy of the accelerated electrons in the range GeV, in
agreement with predictions indirectly derived from AGILE and \textit{Fermi}-LAT
gamma-ray observations. With regard to IC443, our results confirm the
noticeable presence of a bump in the integrated spectrum around GHz
that could result from a spinning dust emission mechanism.Comment: 12 pages, 9 figure
Epidemics in partially overlapped multiplex networks
Many real networks exhibit a layered structure in which links in each layer
reflect the function of nodes on different environments. These multiple types
of links are usually represented by a multiplex network in which each layer has
a different topology. In real-world networks, however, not all nodes are
present on every layer. To generate a more realistic scenario, we use a
generalized multiplex network and assume that only a fraction of the nodes
are shared by the layers. We develop a theoretical framework for a branching
process to describe the spread of an epidemic on these partially overlapped
multiplex networks. This allows us to obtain the fraction of infected
individuals as a function of the effective probability that the disease will be
transmitted . We also theoretically determine the dependence of the epidemic
threshold on the fraction of shared nodes in a system composed of two
layers. We find that in the limit of the threshold is dominated by
the layer with the smaller isolated threshold. Although a system of two
completely isolated networks is nearly indistinguishable from a system of two
networks that share just a few nodes, we find that the presence of these few
shared nodes causes the epidemic threshold of the isolated network with the
lower propagating capacity to change discontinuously and to acquire the
threshold of the other network.Comment: 13 pages, 4 figure
Imaging of SNR IC443 and W44 with the Sardinia Radio Telescope at 1.5 GHz and 7 GHz
Observations of supernova remnants (SNRs) are a powerful tool for
investigating the later stages of stellar evolution, the properties of the
ambient interstellar medium, and the physics of particle acceleration and
shocks. For a fraction of SNRs, multi-wavelength coverage from radio to ultra
high-energies has been provided, constraining their contributions to the
production of Galactic cosmic rays. Although radio emission is the most common
identifier of SNRs and a prime probe for refining models, high-resolution
images at frequencies above 5 GHz are surprisingly lacking, even for bright and
well-known SNRs such as IC443 and W44. In the frameworks of the Astronomical
Validation and Early Science Program with the 64-m single-dish Sardinia Radio
Telescope, we provided, for the first time, single-dish deep imaging at 7 GHz
of the IC443 and W44 complexes coupled with spatially-resolved spectra in the
1.5-7 GHz frequency range. Our images were obtained through on-the-fly mapping
techniques, providing antenna beam oversampling and resulting in accurate
continuum flux density measurements. The integrated flux densities associated
with IC443 are S_1.5GHz = 134 +/- 4 Jy and S_7GHz = 67 +/- 3 Jy. For W44, we
measured total flux densities of S_1.5GHz = 214 +/- 6 Jy and S_7GHz = 94 +/- 4
Jy. Spectral index maps provide evidence of a wide physical parameter scatter
among different SNR regions: a flat spectrum is observed from the brightest SNR
regions at the shock, while steeper spectral indices (up to 0.7) are observed
in fainter cooling regions, disentangling in this way different populations and
spectra of radio/gamma-ray-emitting electrons in these SNRs.Comment: 13 pages, 9 figures, accepted for publication to MNRAS on 18 May 201
Resolution of the stochastic strategy spatial prisoner's dilemma by means of particle swarm optimization
We study the evolution of cooperation among selfish individuals in the
stochastic strategy spatial prisoner's dilemma game. We equip players with the
particle swarm optimization technique, and find that it may lead to highly
cooperative states even if the temptations to defect are strong. The concept of
particle swarm optimization was originally introduced within a simple model of
social dynamics that can describe the formation of a swarm, i.e., analogous to
a swarm of bees searching for a food source. Essentially, particle swarm
optimization foresees changes in the velocity profile of each player, such that
the best locations are targeted and eventually occupied. In our case, each
player keeps track of the highest payoff attained within a local topological
neighborhood and its individual highest payoff. Thus, players make use of their
own memory that keeps score of the most profitable strategy in previous
actions, as well as use of the knowledge gained by the swarm as a whole, to
find the best available strategy for themselves and the society. Following
extensive simulations of this setup, we find a significant increase in the
level of cooperation for a wide range of parameters, and also a full resolution
of the prisoner's dilemma. We also demonstrate extreme efficiency of the
optimization algorithm when dealing with environments that strongly favor the
proliferation of defection, which in turn suggests that swarming could be an
important phenomenon by means of which cooperation can be sustained even under
highly unfavorable conditions. We thus present an alternative way of
understanding the evolution of cooperative behavior and its ubiquitous presence
in nature, and we hope that this study will be inspirational for future efforts
aimed in this direction.Comment: 12 pages, 4 figures; accepted for publication in PLoS ON
Variability of aerosol vertical distribution in the Sahel
In this work, we have studied the seasonal and inter-annual variability of the aerosol vertical distribution over Sahelian Africa for the years 2006, 2007 and 2008, characterizing the different kind of aerosols present in the atmosphere in terms of their optical properties observed by ground-based and satellite instruments, and their sources searched for by using trajectory analysis. This study combines data acquired by three ground-based micro lidar systems located in Banizoumbou (Niger), Cinzana (Mali) and M'Bour (Senegal) in the framework of the African Monsoon Multidisciplinary Analysis (AMMA), by the AEROsol RObotic NETwork (AERONET) sun-photometers and by the space-based Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the CALIPSO satellite (Cloud-Aerosol Lidar and Infrared Pathfinder Observations). <br><br> During winter, the lower levels air masses arriving in the Sahelian region come mainly from North, North-West and from the Atlantic area, while in the upper troposphere air flow generally originates from West Africa, crossing a region characterized by the presence of large biomass burning sources. The sites of Cinzana, Banizoumbou and M'Bour, along a transect of aerosol transport from East to West, are in fact under the influence of tropical biomass burning aerosol emission during the dry season, as revealed by the seasonal pattern of the aerosol optical properties, and by back-trajectory studies. <br><br> Aerosol produced by biomass burning are observed mainly during the dry season and are confined in the upper layers of the atmosphere. This is particularly evident for 2006, which was characterized by a large presence of biomass burning aerosols in all the three sites. <br><br> Biomass burning aerosol is also observed during spring when air masses originating from North and East Africa pass over sparse biomass burning sources, and during summer when biomass burning aerosol is transported from the southern part of the continent by the monsoon flow. <br><br> During summer months, the entire Sahelian region is under the influence of Saharan dust aerosols: the air masses in low levels arrive from West Africa crossing the Sahara desert or from the Southern Hemisphere crossing the Guinea Gulf while in the upper layers air masses still originate from North, North-East. The maximum of the desert dust activity is observed in this period which is characterized by large AOD (above 0.2) and backscattering values. It also corresponds to a maximum in the extension of the aerosol vertical distribution (up to 6 km of altitude). In correspondence, a progressive cleaning up of the lowermost layers of the atmosphere is occurring, especially evident in the Banizoumbou and Cinzana sites. <br><br> Summer is in fact characterized by extensive and fast convective phenomena. <br><br> Lidar profiles show at times large dust events loading the atmosphere with aerosol from the ground up to 6 km of altitude. These events are characterized by large total attenuated backscattering values, and alternate with very clear profiles, sometimes separated by only a few hours, indicative of fast removal processes occurring, likely due to intense convective and rain activity. <br><br> The inter-annual variability in the three year monitoring period is not very significant. An analysis of the aerosol transport pathways, aiming at detecting the main source regions, revealed that air originated from the Saharan desert is present all year long and it is observed in the lower levels of the atmosphere at the beginning and at the end of the year. In the central part of the year it extends upward and the lower levels are less affected by air masses from Saharan desert when the monsoon flow carries air from the Guinea Gulf and the Southern Hemisphere inland
Statistical characterization of deviations from planned flight trajectories in air traffic management
Understanding the relation between planned and realized flight trajectories and the determinants of flight deviations is of great importance in air traffic management. In this paper we perform an in-depth investigation of the statistical properties of planned and realized air traffic on the German airspace during a 28 day periods, corresponding to an AIRAC cycle. We find that realized trajectories are on average shorter than planned ones and this effect is stronger during night-time than day-time. Flights are more frequently deviated close to the departure airport and at a relatively large angle-to-destination. Moreover, the probability of a deviation is higher in low traffic phases. All these evidences indicate that deviations are mostly used by controllers to give directs to flights when traffic conditions allow it. Finally we introduce a new metric, termed di-fork, which is able to characterize navigation points according to the likelihood that a deviation occurs there. Di-fork allows to identify in a statistically rigorous way navigation point pairs where deviations are more (less) frequent than expected under a null hypothesis of randomness that takes into account the heterogeneity of the navigation points. Such pairs can therefore be seen as sources of flexibility (stability) of controllers' traffic management while conjugating safety and efficiency
- …
