18 research outputs found

    No statistical evidence of lightning in Venus night-side atmosphere from VIRTIS-Venus Express Visible observations

    Get PDF
    In this study we describe a dedicated analysis of luminous transient events on Venus night side atmosphere with the visible channel of the VIRTIS instrument (280-1100 nm), this being the most comprehensive search of lightning conducted so far with Venus Express data. Our search results in thousands of signal detections, but unfortunately they can be all explained by cosmic rays impinging on the detector, and further statistical analysis shows that all of the events are randomly distributed along the spectral dimension, therefore not showing any clear evidence of signal coming from lightning emission in the Venus atmosphere. This does not exclude the existence of lightning, but imposes some constraints on their occurrence that are important for future research

    The 2018 Martian Global Dust Storm over the South Polar Region studied with MEx/VMC

    Get PDF
    We study the 2018 Martian global dust storm (GDS 2018) over the Southern Polar Region using images obtained by the Visual Monitoring Camera (VMC) on board Mars Express (MEx) during June and July 2018. Dust penetrated into the polar cap region but never covered the cap completely, and its spatial distribution was nonhomogeneous and rapidly changing. However, we detected long but narrow aerosol curved arcs with a length of ~2,000–3,000 km traversing part of the cap and crossing the terminator into the nightside. Tracking discrete dust clouds allowed measurements of their motions that were toward the terminator with velocities up to 100 m/s. The images of the dust projected into the Martian limb show maximum altitudes of ~70 km but with large spatial and temporal variations. We discuss these results in the context of the predictions of a numerical model for dust storm scenario.This work has been supported by the Spanish project AYA2015-65041-P (MINECO/FEDER, UE) and Grupos Gobierno Vasco IT-1366-19. J. H. B. was supported by ESA Contract 4000118461/16/ES/JD, Scientific Support for Mars Express Visual Monitoring Camera. We acknowledge support from the Faculty of the European Space Astronomy Centre (ESAC). VMC raw images used in this study can be accessed through VMC raw file gallery http://blogs.esa.int/ftp/. VMC raw and calibrated images will be available in ESA PSA in the near future. A list of observations used in this paper is provided in the supporting information. MCD database files are available in http://www-mars.lmd.jussieu.fr/mars.html

    Lightning detection in planetary atmospheres

    Full text link
    Lightning in planetary atmospheres is now a well-established concept. Here we discuss the available detection techniques for, and observations of, planetary lightning by spacecraft, planetary landers and, increasingly, sophisticated terrestrial radio telescopes. Future space missions carrying lightning-related instrumentation are also summarised, specifically the European ExoMars mission and Japanese Akatsuki mission to Venus, which could both yield lightning observations in 2016.Comment: Accepted for publication in Weather as part of a special issue on Advances in Lightning Detectio

    An Extremely Elongated Cloud over Arsia Mons Volcano on Mars: I. Life Cycle

    Get PDF
    We report a previously unnoticed annually repeating phenomenon consisting of the daily formation of an extremely elongated cloud extending as far as 1800 km westward from Arsia Mons. It takes place in the Solar Longitude (Ls) range of ~220-320, around the Southern solstice. We study this Arsia Mons Elongated Cloud (AMEC) using images from different orbiters, including ESA Mars Express, NASA MAVEN, Viking 2, MRO, and ISRO Mars Orbiter Mission (MOM). We study the AMEC in detail in Martian Year (MY) 34 in terms of Local Time and Ls and find that it exhibits a very rapid daily cycle: the cloud growth starts before sunrise on the western slope of the volcano, followed by a westward expansion that lasts 2.5 hours with a velocity of around 170 m/s in the mesosphere (~45 km over the areoid). The cloud formation then ceases, it detaches from its formation point, and continues moving westward until it evaporates before the afternoon, when most sun-synchronous orbiters observe. Moreover we comparatively study observations from different years (i.e. MYs 29-34) in search of interannual variations and find that in MY33 the cloud exhibits lower activity, whilst in MY34 the beginning of its formation was delayed compared to other years, most likely due to the Global Dust Storm. This phenomenon takes place in a season known for the general lack of clouds on Mars. In this paper we focus on observations, and a theoretical interpretation will be the subject of a separate paper

    An Extremely Elongated Cloud Over Arsia Mons Volcano on Mars: I. Life Cycle

    Get PDF
    We report a previously unnoticed annually repeating phenomenon consisting of the daily formation of an extremely elongated cloud extending as far as 1,800 km westward from Arsia Mons. It takes place in the solar longitude (Ls) range of ∼220°–320°, around the Southern solstice. We study this Arsia Mons Elongated Cloud (AMEC) using images from different orbiters, including ESA Mars Express, NASA MAVEN, Viking 2, MRO, and ISRO Mars Orbiter Mission (MOM). We study the AMEC in detail in Martian year (MY) 34 in terms of local time and Ls and find that it exhibits a very rapid daily cycle: the cloud growth starts before sunrise on the western slope of the volcano, followed by a westward expansion that lasts 2.5 h with a velocity of around 170 m/s in the mesosphere (∼45 km over the areoid). The cloud formation then ceases, detaches from its formation point, and continues moving westward until it evaporates before the afternoon, when most sun-synchronous orbiters make observations. Moreover, we comparatively study observations from different years (i.e., MYs 29–34) in search of interannual variations and find that in MY33 the cloud exhibits lower activity, while in MY34 the beginning of its formation was delayed compared with other years, most likely due to the Global Dust Storm. This phenomenon takes place in a season known for the general lack of clouds on Mars. In this paper we focus on observations, and a theoretical interpretation will be the subject of a separate paper.This work has been supported by the Spanish project AYA2015-65041-P and PID2019-109467GB-I00 (MINECO/FEDER, UE) and Grupos Gobierno Vasco IT-1366-19. JHB was supported by ESA Contract No. 4000118461/16/ES/JD, Scientific Support for Mars Express Visual Monitoring Camera. The Aula EspaZio Gela is supported by a grant from the Diputación Foral de Bizkaia (BFA). We acknowledge support from the Faculty of the European Space Astronomy Center (ESAC). Special thanks are due to the Mars Express Science Ground Segment and Flight Control Team at ESAC and ESOC. The contributions by K.C and N.M.S were supported by NASA through the MAVEN project

    Independent confirmation of a methane spike on Mars and a source region east of Gale Crater

    Get PDF
    Reports of methane detection in the Martian atmosphere have been intensely debated. The presence of methane could enhance habitability and may even be a signature of life. However, no detection has been confirmed with independent measurements. Here, we report a firm detection of 15.5 ± 2.5 ppb by volume of methane in the Martian atmosphere above Gale Crater on 16 June 2013, by the Planetary Fourier Spectrometer onboard Mars Express, one day after the in situ observation of a methane spike by the Curiosity rover. Methane was not detected in other orbital passages. The detection uses improved observational geometry, as well as more sophisticated data treatment and analysis, and constitutes a contemporaneous, independent detection of methane. We perform ensemble simulations of the Martian atmosphere, using stochastic gas release scenarios to identify a potential source region east of Gale Crater. Our independent geological analysis also points to a source in this region, where faults of Aeolis Mensae may extend into proposed shallow ice of the Medusae Fossae Formation and episodically release gas trapped below or within the ice. Our identification of a probable release location will provide focus for future investigations into the origin of methane on Mars

    From hot to cold? – Hydrothermal activities as a source for icy-debris flows on Dryas Mons, Terra Sirenum, Mars

    No full text
    During an extensive grid-mapping campaign on Mars' southern hemisphere, we have detected so-called sheet flow deposits, which are defined by distinctive lobate fronts, thin and mostly planar layers, and faint sub-parallel surface lineations. They originate from the high plains of Dryas Mons, a large massif of impact and tectonic origin, and follow the topographic gradient down into the adjacent basins. Their sources often coincide with steep and multi-layered outcrops. This work addresses the formation of these deposits, and if they are related to the unique tectonic and endogenic environment of Dryas Mons. We applied photogeological mapping, age determinations by crater counts, as well as topographic and heat flow measurements in order to reconstruct the evolution of these landforms. The calculated ages (mid to late Amazonian), their location in the mid-latitudes, as well as some specific morphologies like lobate flow fronts are typical for standard viscous-flow features on Mars. In contrast to such viscous-flow features, the sheet flow deposits occur isolated in the Dryas Mons region. Aside from that, major other landforms, typical for viscous-flow features are lacking, like sublimation pits, brain terrain or arcuate deformations. Considering these similarities and differences, we suggest that both landforms viscous-flow features and the sheet flow deposits of Dryas Mons were formed by the involvement of volatiles; however, at varying amounts and by different emplacement processes. As the formation of the sheet flow deposits is located in an area with one of the highest heat flow values planet-wide, we calculated if the heat flow could be a potential trigger for the release of outcropping volatile-rich layers. However, our calculations have shown that the heat flow is still insufficient to enable near-surface melting. Instead, we suggest that the volatiles originate from deep layers affected by magmatic and/or intrusive activities in a tectonically active environment. These conditions led to melting and mobilisation of the volatiles by advective hydrothermal processes. Thus, the volatiles migrated upward along hypothesized deep-seated fault systems, formed by Noachian/Hesperian impacts and tectonic activities, until they reached conductive layers outcropping at Dryas Mons, enabling them to drain. After their release to the cold Amazonian atmosphere, this mixture of volatiles and solids partially froze, resulting in a comparatively high viscosity, and hence, a slow and laminar (non-turbulent) movement. This flow behaviour might have led to the formation of the lineations at their surface along shear zones. Hence, we suggest that the sheet flow deposits may have originally formed as slowly moving icy debris flows during the mid- to late Amazonian.This work has been funded by the Research Fellowship Program through the European Space Agency. J. Ruiz contribution was supported by the project PGC2018-095340-B-I00 from the Spanish Ministry of Science, Innovation and Universities

    Visibility analysis of Phobos to support a science and exploration platform

    No full text
    The surfaces of the Martian moons, Phobos and Deimos may offer a stable environment for long-term operation of platforms. We present a broad assessment of potential scientific investigations, as well as strategic and operational opportunities offered by long-term operation of an instrumented lander. Studies using observations of Mars’ moons, and the detailed new findings expected from the JAXA Martian Moons eXploration (MMX) mission, International Mars Sample Return (MSR) Campaign and other upcoming Mars missions, provide a driver for feasibility and trade studies for follow-on missions that would build on the knowledge gain from those missions. We discuss the scientific questions and operational objectives that may be pertinent for landed platforms on the martian moons, including (1) monitoring and scientific investigations of Mars’ surface and atmosphere, (2) scientific investigations of the martian moons, (3) monitoring and scientific investigations of the space environment, (4) data relay for Mars surface assets or interplanetary missions and 5) use in a Mars navigation/positioning system. We present results from visibility calculations performed using the SPICE observation geometry system for space science missions, and a Phobos shape model. We compute as a function of location on Phobos, visibility quantities that are most relevant to science and operational objectives. These include visibility from Phobos of the Sun, Earth, Mars surface and atmosphere, Deimos, and Jupiter. We also consider occultation events by the Mars atmosphere of Earth and Deimos that may provide opportunities for radio science. Calculations are performed for a study period spanning one Mars year in a hypothetical future operational scenario (1 Jan 2030–18 Nov 2031). We combine visibility metrics to identify locations on Phobos most suitable for long-term operation of a platform. We find the Mars-facing side of Phobos, and limited areas on the leading and trailing sides, satisfy the most requirements defined for Mars and Phobos science, space environment monitoring, and data relay/navigation. We demonstrate that compliance with requirements related to visibility of Mars and its atmosphere are not mutually exclusive with those that are better satisfied on Phobos’ anti-Mars side, such as those aided by maximizing their cumulative view factor to the ecliptic plane (i.e. visibility to the Sun, Earth or outer solar system). Finally, our methodology allows to assess the extent to which combined visibility metrics can meet mission requirements. The process we describe can be used to support landing site identification and selection on planets, moons and small bodies. Graphical Abstract: [Figure not available: see fulltext.
    corecore