364 research outputs found

    Synthesis, In Silico Studies, Antiprotozoal and Cytotoxic Activities of Quinoline‐Biphenyl Hybrids

    Get PDF
    This is the pre-peer reviewed version of the following article: Synthesis, In Silico Studies, Antiprotozoal and Cytotoxic Activities of Quinoline‐Biphenyl Hybrids, which has been published in final form at https://doi.org/10.1002/slct.201903835. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived VersionsThe synthesis, in silico studies, antiprotozoal and cytotoxic activities of eleven quinoline‐biphenyl hybrids are described herein. The structure of the synthesized products was elucidated by a combination of spectrometric analyses. The synthesized compounds were evaluated against Plasmodium falciparum, and amastigotes forms both Leishmania (V) panamensis and Trypanosoma cruzi. Cytotoxicity was evaluated against human U‐937 macrophages. 8‐phenylquinoline (4 a) showed similar activity than meglumine antimoniate and 4‐(quinolin‐8‐yl)phenol (4 b) exhibited an activity similar to that of benznidazole. 8‐(3,4‐dimethoxyphenyl) quinoline (4 k) showed the best activity against P. falciparum. Although these compounds were toxic for mammalian U‐937 cells, however they may still have potential to be considered as candidates for drug development because of their antiparasite activity. Molecular docking was used to determine the in silico inhibition of some of the designed compounds against PfLDH and cruzipain, two important pharmacological targets involved in antiparasitic diseases. All hybrids were docked to the three‐dimensional structures of PfLDH and T. cruzi cruzipain as enzymes using AutoDock Vina. Notably, the docking results showed that the most active compounds 4‐(quinolin‐8‐yl)phenol (4 b, CE50: 11.33 μg/mL for T. cruzi) and 8‐(3,4‐dimethoxyphenyl) quinoline (4 k, CE50: 8.84 μg/mL for P. falciparum) exhibited the highest scoring pose (−7.5 and −7.7 kcal/mol, respectively). This result shows a good correlation between the predicted scores with the experimental data profile, suggesting that these ligands could act as competitive inhibitors of PfLDH or T. cruzi cruzipain enzymes, respectively. Finally, in silico ADME studies of the quinoline hybrids showed that these novel compounds have suitable drug‐like properties, making them potentially promising agents for antiprotozoal therapy

    a single blinded randomized pilot study of botulinum toxin type a combined with non pharmacological treatment for spastic foot

    Get PDF
    OBJECTIVE: To explore the effect of treatment after botulinum toxin type A combined with treatments for the spastic foot. DESIGN: Single-blind, randomized trial, with 3-month follow-up. SUBJECTS: Twenty-three chronic hemiplegic adult patients with spastic equinus foot. METHODS: Following botulinum toxin type A injection at the medial and lateral gastrocnemius, patients were assigned randomly to 3 groups, and treated with taping, electrical stimulation or stretching. They were evaluated before treatment (t0), and at 10 (t1), 20 (t2) and 90 (t3) days after treatment. Outcome measures were: Modified Ashworth Scale; passive range of motion at the ankle; measurement of muscle action potential at the gastrocnemius medialis; and measurement of maximum ankle dorsiflexion angle in stance using gait analysis. RESULTS: The group treated with electrical stimulation performed better at t1 on the Modified Ashworth Scale. The taping and electrical stimulation groups performed better in all outcome measures at t3. The taping group performed better mainly for maximum ankle dorsiflexion angle in stance. The stretching group showed a less durable result, with some worsening at the t3 evaluation compared with the assessment performed before treatment. CONCLUSIONS: This pilot study indicates that combining botulinum toxin type A administration for the ankle plantar flexors with taping and electrical stimulation might be beneficial

    High submicellar liquid chromatography

    Get PDF
    Surfactant addition above the critical micellar concentration (CMC), in reversed-phase liquid chromatography (RPLC), was proposed as a way to modify the selectivity and analysis time, giving rise to a chromatographic mode called micellar liquid chromatography (MLC). However, solutions containing only surfactant are too weak and yield poor peak shape. This was remediated by the addition of a small amount of organic solvent. To preserve the existence of micelles, in MLC high contents of organic solvent are avoided. Nevertheless, there is no reason to neglect the potentiality of mobile phases containing a surfactant above its CMC in water and a high organic solvent content (without micelles). This chromatographic mode has been called high submicellar liquid chromatography (HSLC). Several reported procedures show that the combination of stronger elution strength, larger selectivity and improved peak shape, with respect to MLC and conventional RPLC, makes HSLC a promising chromatographic mode to achieve in practical times separations of compounds unresolved or highly retained with other RPLC modes. Some insights on the interactions that occur inside the chromatographic column, the modification of the stationary and mobile phases, retention modeling, and chromatographic performance in HSLC are here offered, in comparison to MLC and conventional RPLC

    Implantación de las buenas prácticas de laboratorio en la asignatura "Química para las Ingenierias" en la Universitat Jaume I

    Get PDF
    Comunicación presentada en la V Jornada Nacional sobre Estudios Universitarios, celebrades en la Universitat Jaume I (Castellón, España), los dies 12 y 13 de Noviembre de 2015.En el presente artículo, se detalla la implementación de las Buenas Prácticas de Laboratorio (BPL) en el laboratorio de la asignatura «Química para las Ingenierías» (EX1006), impartida en varios grados de ingeniería (Agroalimentaria y del Medio Ambiente, Mecánica, Eléctrica, Tecnologías Industriales y Química) de la Universitat Jaume I. Las BLP son un conjunto de normas y procedimientos operativos acerca de la forma adecuada de organizar y trabajar en el laboratorio en una amplia variedad de disciplinas científicas, incluida la química. El principal objetivo de las BPL es asegurar la fiabilidad, estabilidad y calidad de los resultados. Para ello, se indica cómo el procedimiento experimental debe ser planificado, ejecutado, supervisado, anotado, registrado y archivado. Asimismo, proporciona recomendaciones para la gestión del laboratorio, en especial para minimizar el vertido de residuos tóxicos, e incrementar la seguridad laboral en el laboratorio. Varias organizaciones y agencias internacionales (industria farmacéutica, la Organización para la Cooperación y el Desarrollo Económicos, US Food and Drug Administration y la Comisión Europea), han desarrollado y promulgado varios conjuntos de normas BLP. La Universitat Jaume I considera que un conocimiento profundo y una aplicación adecuada de las BPL son muy importantes para desarrollar un trabajo correcto en el laboratorio químico. Por ello, los estudiantes de química deben ser conscientes desde el primer curso académico de su relevancia, así como conocer las normas principales y la forma de aplicarlas en el laboratorio. Por ello, las BPL se han incluido en la guía docente de la asignatura de Laboratorio de Química para las Ingenierías (1er curso académico) Además, los profesores deben centrarse en las BLP al impartir la docencia, para un correcto aprendizaje por parte de los estudiantes. Se requirió a los estudiantes que evaluasen el proceso de implantación y mostrasen su grado de aceptación de las BPL, mediante un cuestionario global de la asignatura. Como resultado final, se puede remarcar que los estudiantes comprendieron la utilidad de las BPL y la importancia de conocerlas para su futuro laboral, así como la necesidad de su inclusión en la guía docente de las asignatura de laboratorios de química

    Synthesis, antiprotozoal activity and cytotoxicity in U-937 macrophages of triclosan–hydrazone hybrids

    Get PDF
    The synthesis and biological activities (cytotoxicity, leishmanicidal, and trypanocidal) of 11 triclosan–hydrazone hybrids are described herein. The structure of the products was elucidated by spectral data (NMR, IR) and mass spectrometric analyses. The synthesized compounds were evaluated against amastigotes forms of L. (V) panamensis, which is the most prevalent Leishmania species in Colombia, and against Trypanosoma cruzi, which is the major pathogenic species to Chagas disease in humans. In addition, the cytotoxic activity of the synthesized compounds was evaluated against human U-937 macrophages. Hydrazone hybrids were obtained as E-synperiplanar and E-antiperiplanar conformers. Nine of them were active against L. (V) panamensis (5a–5d, 5f–5j) and eight of them against T. cruzi (5a, 5c, 5d, 5f–5j), with EC50 values lower than 40 µM. The compounds 5c, 5e, and 5h exhibit the best selectivity index against both L. (V) panamensis and T. cruzi, with values ranging from 5.90 to 16.55, thus showing potential as starting compounds for the eventual development of drugs against these parasites. The presence of hydroxy or methoxy groups in positions 2 and 4 of the aromatic ring of the benzylidene moiety increases both activity and cytotoxicity. There is no clear relationship between the antiprotozoal activity and the methylation pattern of the hydroxy groups, since in some cases methylation decreases the activity (5d vs. 5g) while in other cases the activity is increased (5c vs. 5f and 5i vs. 5j

    Management of diversity in master classroom: an increasing challenge for science education in valencian universities

    Get PDF
    Comunicació presentada a INTED2018, 12th International Technology, Education and Development Conference. (March 5-7, 2018, Valencia, Spain).Currently, many foreign students study a Master degree at the Valencian Universities. We can find students, which have immigrated to Spain in the recent years, and then have partially or fully follow the Spanish curricula (High School and/or Grade), and others which have come specifically to study the Master, attracted by the reputation of the Universities and the job and way-of-life offered by the country, and then have achieved their Grade in their countries. This has increased the diversity of the students in the classrooms, related to the ethnic origin, mother language, study practices, background and integration in the society. The present work gives an overview on how students and teacher manage the heterogeneity and diversity in a Master classroom related to chemistry. The term “diversity” is first detailed prior to discussing explicit studies. Different aspects of diversity are stated. The personal experience of the foreign students to adapt to the Spanish courses and environment was investigated. The actions taken by the lecturer to take advantage of diversity and minimize its negative effects were examined. A comparison between the academic results obtained by international and national students is given. Finally, the attention will be focused on language, study practices and background, since these dimensions are frequently discussed in the Valencian context. The implications and opportunities that offer diversity for national but also for international science research are presented

    Design of the laboratory script by the students in chemistry practicals: Analysis of water

    Get PDF
    Comunicació presentada a INTED2018, 12th International Technology, Education and Development Conference. (March 5-7, 2018, Valencia, Spain).The laboratory practices during the Degree in Chemistry are currently designed so that the student must learn and execute a fully developed experimental protocol, previously written up by the professor, which contains all the information and requirements for the correct development of each laboratory session. Under these conditions, students do not need to take any initiative and, consequently, they do not put enough effort in reaching practical abilities with a well-based scientific criterion and do not try to think over the purpose of each lab operation, as well as the reason to use each material and/or each reagent. Thus, with the aim to promote a more active role of the students in their learning process and to improve their autonomy, a new laboratory practices design has been developed in this work, which follows methodologies on project-based cooperative learning: the students have been requested to elaborate themselves the laboratory script by pairs. With this innovative design, we pursue to involve the students in both elaboration and execution steps of the laboratory practicals, and then to increase their attention on them. Besides, the required bibliographic research would improve their knowledge about the studied topic and all aspects about the work at the laboratory. The practicals to-be-developed were related to the study of the physico-chemical quality of natural water, which has a high social relevance

    A cell-free approach with a supporting biomaterial in the form of dispersed microspheres induces hyaline cartilage formation in a rabbit knee model

    Get PDF
    [EN] The objective of this study was to test a regenerative medicine strategy for the regeneration of articular cartilage. This approach combines microfracture of the subchondral bone with the implant at the site of the cartilage defect of a supporting biomaterial in the form of microspheres aimed at creating an adequate biomechanical environment for the differentiation of the mesenchymal stem cells that migrate from the bone marrow. The possible inflammatory response to these biomaterials was previously studied by means of the culture of RAW264.7 macrophages. The microspheres were implanted in a 3¿mm-diameter defect in the trochlea of the femoral condyle of New Zealand rabbits, covering them with a poly(l-lactic acid) (PLLA) membrane manufactured by electrospinning. Experimental groups included a group where exclusively PLLA microspheres were implanted, another group where a mixture of 50/50 microspheres of PLLA (hydrophobic and rigid) and others of chitosan (a hydrogel) were used, and a third group used as a control where no material was used and only the membrane was covering the defect. The histological characteristics of the regenerated tissue have been evaluated 3 months after the operation. We found that during the regeneration process the microspheres, and the membrane covering them, are displaced by the neoformed tissue in the regeneration space toward the subchondral bone region, leaving room for the formation of a tissue with the characteristics of hyaline cartilage.Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Universidad Nacional de La Plata, Grant/Award Number: 11/X643; Agencia Estatal de Investigación/Fondo Europeo de Desarrollo Regional de la Unión Europea, Grant/Award Number: MAT2016-76039-C4-1 2-R; Spanish Ministry of Economy and Competitiveness (MINECO)Zurriaga Carda, J.; Lastra, ML.; Antolinos-Turpin, CM.; Morales-Román, RM.; Sancho-Tello, M.; Perea-Ruiz, S.; Milián, L.... (2020). A cell-free approach with a supporting biomaterial in the form of dispersed microspheres induces hyaline cartilage formation in a rabbit knee model. Journal of Biomedical Materials Research Part B Applied Biomaterials. 108(4):1428-1438. https://doi.org/10.1002/jbm.b.34490S142814381084Allepuz, A., Martínez, O., Tebé, C., Nardi, J., Portabella, F., & Espallargues, M. (2014). Joint Registries as Continuous Surveillance Systems: The Experience of the Catalan Arthroplasty Register (RACat). The Journal of Arthroplasty, 29(3), 484-490. doi:10.1016/j.arth.2013.07.048Almeida, C. R., Serra, T., Oliveira, M. I., Planell, J. A., Barbosa, M. A., & Navarro, M. (2014). Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: Unraveling the effect of 3-D structures on inflammation. Acta Biomaterialia, 10(2), 613-622. doi:10.1016/j.actbio.2013.10.035Bell, A. D., Hurtig, M. B., Quenneville, E., Rivard, G.-É., & Hoemann, C. D. (2016). Effect of a Rapidly Degrading Presolidified 10 kDa Chitosan/Blood Implant and Subchondral Marrow Stimulation Surgical Approach on Cartilage Resurfacing in a Sheep Model. CARTILAGE, 8(4), 417-431. doi:10.1177/1947603516676872Bitencourt, C. da S., Silva, L. B. da, Pereira, P. A. T., Gelfuso, G. M., & Faccioli, L. H. (2015). Microspheres prepared with different co-polymers of poly(lactic-glycolic acid) (PLGA) or with chitosan cause distinct effects on macrophages. Colloids and Surfaces B: Biointerfaces, 136, 678-686. doi:10.1016/j.colsurfb.2015.10.011Bonasia, D. E., Martin, J. A., Marmotti, A., Kurriger, G. L., Lehman, A. D., Rossi, R., & Amendola, A. (2015). The use of autologous adult, allogenic juvenile, and combined juvenile–adult cartilage fragments for the repair of chondral defects. Knee Surgery, Sports Traumatology, Arthroscopy, 24(12), 3988-3996. doi:10.1007/s00167-015-3536-5Carmona, L. (2001). The burden of musculoskeletal diseases in the general population of Spain: results from a national survey. Annals of the Rheumatic Diseases, 60(11), 1040-1045. doi:10.1136/ard.60.11.1040Chu, J., Zeng, S., Gao, L., Groth, T., Li, Z., Kong, J., … Li, L. (2016). Poly (L-Lactic Acid) Porous Scaffold-Supported Alginate Hydrogel with Improved Mechanical Properties and Biocompatibility. The International Journal of Artificial Organs, 39(8), 435-443. doi:10.5301/ijao.5000516Conoscenti, G., Schneider, T., Stoelzel, K., Carfì Pavia, F., Brucato, V., Goegele, C., … Schulze-Tanzil, G. (2017). PLLA scaffolds produced by thermally induced phase separation (TIPS) allow human chondrocyte growth and extracellular matrix formation dependent on pore size. Materials Science and Engineering: C, 80, 449-459. doi:10.1016/j.msec.2017.06.011Dashtdar, H., Murali, M. R., Abbas, A. A., Suhaeb, A. M., Selvaratnam, L., Tay, L. X., & Kamarul, T. (2013). PVA-chitosan composite hydrogel versus alginate beads as a potential mesenchymal stem cell carrier for the treatment of focal cartilage defects. Knee Surgery, Sports Traumatology, Arthroscopy, 23(5), 1368-1377. doi:10.1007/s00167-013-2723-5Denlinger, L. C., Fisette, P. L., Garis, K. A., Kwon, G., Vazquez-Torres, A., Simon, A. D., … Corbett, J. A. (1996). Regulation of Inducible Nitric Oxide Synthase Expression by Macrophage Purinoreceptors and Calcium. Journal of Biological Chemistry, 271(1), 337-342. doi:10.1074/jbc.271.1.337Fernández, J. M., Cortizo, M. S., & Cortizo, A. M. (2014). Fumarate/Ceramic Composite Based Scaffolds for Tissue Engineering: Evaluation of Hydrophylicity, Degradability, Toxicity and Biocompatibility. Journal of Biomaterials and Tissue Engineering, 4(3), 227-234. doi:10.1166/jbt.2014.1158García Cruz, D. M., Escobar Ivirico, J. L., Gomes, M. M., Gómez Ribelles, J. L., Sánchez, M. S., Reis, R. L., & Mano, J. F. (2008). Chitosan microparticles as injectable scaffolds for tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2(6), 378-380. doi:10.1002/term.106Gordon, S. (2007). The macrophage: Past, present and future. European Journal of Immunology, 37(S1), S9-S17. doi:10.1002/eji.200737638Goyal, D., Keyhani, S., Lee, E. H., & Hui, J. H. P. (2013). Evidence-Based Status of Microfracture Technique: A Systematic Review of Level I and II Studies. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 29(9), 1579-1588. doi:10.1016/j.arthro.2013.05.027Hangody, L., Kish, G., Kárpáti, Z., Udvarhelyi, I., Szigeti, I., & Bély, M. (1998). Mosaicplasty for the Treatment of Articular Cartilage Defects: Application in Clinical Practice. Orthopedics, 21(7), 751-756. doi:10.3928/0147-7447-19980701-04Hoemann, C., Kandel, R., Roberts, S., Saris, D. B. F., Creemers, L., Mainil-Varlet, P., … Buschmann, M. D. (2011). International Cartilage Repair Society (ICRS) Recommended Guidelines for Histological Endpoints for Cartilage Repair Studies in Animal Models and Clinical Trials. CARTILAGE, 2(2), 153-172. doi:10.1177/1947603510397535Kumar, M. N. V. R., Muzzarelli, R. A. A., Muzzarelli, C., Sashiwa, H., & Domb, A. J. (2004). Chitosan Chemistry and Pharmaceutical Perspectives. Chemical Reviews, 104(12), 6017-6084. doi:10.1021/cr030441bKuo, T.-F., Lin, M.-F., Lin, Y.-H., Lin, Y.-C., Su, R.-J., Lin, H.-W., & Chan, W. P. (2011). Implantation of platelet-rich fibrin and cartilage granules facilitates cartilage repair in the injured rabbit knee: preliminary report. Clinics, 66(10), 1835-1838. doi:10.1590/s1807-59322011001000026Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159. doi:10.2307/2529310Lao, L., Tan, H., Wang, Y., & Gao, C. (2008). Chitosan modified poly(l-lactide) microspheres as cell microcarriers for cartilage tissue engineering. Colloids and Surfaces B: Biointerfaces, 66(2), 218-225. doi:10.1016/j.colsurfb.2008.06.014Lastra, M. L., Molinuevo, M. S., Blaszczyk-Lezak, I., Mijangos, C., & Cortizo, M. S. (2017). Nanostructured fumarate copolymer-chitosan crosslinked scaffold: An in vitro osteochondrogenesis regeneration study. Journal of Biomedical Materials Research Part A, 106(2), 570-579. doi:10.1002/jbm.a.36260Lastra, M. L., Molinuevo, M. S., Cortizo, A. M., & Cortizo, M. S. (2016). Fumarate Copolymer-Chitosan Cross-Linked Scaffold Directed to Osteochondrogenic Tissue Engineering. Macromolecular Bioscience, 17(5). doi:10.1002/mabi.201600219Lebourg, M., Martínez-Díaz, S., García-Giralt, N., Torres-Claramunt, R., Ribelles, J. G., Vila-Canet, G., & Monllau, J. (2013). Cell-free cartilage engineering approach using hyaluronic acid–polycaprolactone scaffolds: A study in vivo. Journal of Biomaterials Applications, 28(9), 1304-1315. doi:10.1177/0885328213507298Luzardo-Alvarez, A., Blarer, N., Peter, K., Romero, J. F., Reymond, C., Corradin, G., & Gander, B. (2005). Biodegradable microspheres alone do not stimulate murine macrophages in vitro, but prolong antigen presentation by macrophages in vitro and stimulate a solid immune response in mice. Journal of Controlled Release, 109(1-3), 62-76. doi:10.1016/j.jconrel.2005.09.015Mainil-Varlet, P., Van Damme, B., Nesic, D., Knutsen, G., Kandel, R., & Roberts, S. (2010). A New Histology Scoring System for the Assessment of the Quality of Human Cartilage Repair: ICRS II. The American Journal of Sports Medicine, 38(5), 880-890. doi:10.1177/0363546509359068Martinez-Diaz, S., Garcia-Giralt, N., Lebourg, M., Gómez-Tejedor, J.-A., Vila, G., Caceres, E., … Monllau, J. C. (2010). In Vivo Evaluation of 3-Dimensional Polycaprolactone Scaffolds for Cartilage Repair in Rabbits. The American Journal of Sports Medicine, 38(3), 509-519. doi:10.1177/0363546509352448McCormick, F., Harris, J. D., Abrams, G. D., Frank, R., Gupta, A., Hussey, K., … Cole, B. (2014). Trends in the Surgical Treatment of Articular Cartilage Lesions in the United States: An Analysis of a Large Private-Payer Database Over a Period of 8 Years. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 30(2), 222-226. doi:10.1016/j.arthro.2013.11.001Sancho-Tello, M., Forriol, F., Gastaldi, P., Ruiz-Saurí, A., Martín de Llano, J. J., Novella-Maestre, E., … Carda, C. (2015). Time Evolution of in Vivo Articular Cartilage Repair Induced by Bone Marrow Stimulation and Scaffold Implantation in Rabbits. The International Journal of Artificial Organs, 38(4), 210-223. doi:10.5301/ijao.5000404Sancho-Tello, M., Forriol, F., de Llano, J. J. M., Antolinos-Turpin, C., Gómez-Tejedor, J. A., Ribelles, J. L. G., & Carda, C. (2017). Biostable Scaffolds of Polyacrylate Polymers Implanted in the Articular Cartilage Induce Hyaline-Like Cartilage Regeneration in Rabbits. The International Journal of Artificial Organs, 40(7), 350-357. doi:10.5301/ijao.5000598Steadman, J. R., Rodkey, W. G., Briggs, K. K., & Rodrigo, J. J. (1999). The microfracture technique to treat full thickness articular cartilage defects of the knee. Der Orthopäde, 28(1), 26-32. doi:10.1007/pl00003545Tetè, S., Mastrangelo, F., Carone, L., Nargi, E., Costanzo, G., Vinci, R., … Ciccarelli, R. (2007). Morphostructural Analysis of Human Follicular Stem Cells on Highly Porous Bone Hydroxyapatite Scaffold. International Journal of Immunopathology and Pharmacology, 20(4), 819-826. doi:10.1177/039463200702000418Van den Borne, M. P. J., Raijmakers, N. J. H., Vanlauwe, J., Victor, J., de Jong, S. N., Bellemans, J., & Saris, D. B. F. (2007). International Cartilage Repair Society (ICRS) and Oswestry macroscopic cartilage evaluation scores validated for use in Autologous Chondrocyte Implantation (ACI) and microfracture. Osteoarthritis and Cartilage, 15(12), 1397-1402. doi:10.1016/j.joca.2007.05.005Vikingsson, L., Sancho-Tello, M., Ruiz-Saurí, A., Díaz, S. M., Gómez-Tejedor, J. A., Ferrer, G. G., … Ribelles, J. L. G. (2015). Implantation of a Polycaprolactone Scaffold with Subchondral Bone Anchoring Ameliorates Nodules Formation and Other Tissue Alterations. The International Journal of Artificial Organs, 38(12), 659-666. doi:10.5301/ijao.5000457Zan, Q., Wang, C., Dong, L., Cheng, P., & Tian, J. (2008). Effect of surface roughness of chitosan-based microspheres on cell adhesion. Applied Surface Science, 255(2), 401-403. doi:10.1016/j.apsusc.2008.06.074Zhang, C., Cai, Y., & Lin, X. (2016). One-Step Cartilage Repair Technique as a Next Generation of Cell Therapy for Cartilage Defects: Biological Characteristics, Preclinical Application, Surgical Techniques, and Clinical Developments. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 32(7), 1444-1450. doi:10.1016/j.arthro.2016.01.061Zhu, W., Chen, K., Lu, W., Sun, Q., Peng, L., Fen, W., … Zeng, Y. (2013). In vitro study of nano-HA/PLLA composite scaffold for rabbit BMSC differentiation under TGF-β1 induction. In Vitro Cellular & Developmental Biology - Animal, 50(3), 214-220. doi:10.1007/s11626-013-9699-

    Development of a glass-ceramic glaze formulated from industrial residues to improve the mechanical properties of the porcelain stoneware tiles

    Get PDF
    In this research a mixture of 90%wt of industrial residues (recycled soda-lime glass and ashes from a coalpower thermal plant) have been vitrified for their use as ‘‘secondary raw material”. Then, a glaze suspen-sion was prepared to be applied on the porcelain stoneware tile. The tested pieces have been fired by aconventional porcelain cycle at 1180 °C of maximum temperature. The XRD, XRF, SEM/EDS and thedilatometric analysis have been the instrumental techniques used to characterize the material. Finally,an ecological glass-ceramic glaze perfectly fitting on porcelain ceramic tile has been produced, exhibitinga unique phase, anorthite, which ensures a high flexural strength (around 96 MPa) and a significantVickers microhardness of 250 GPa, improving the mechanical properties of a conventional the porcelainceramic tile
    corecore