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Abstract 6 

 In 1980, the addition of a surfactant above the critical micellar concentration (CMC) in 7 

reversed-phase liquid chromatography (RPLC) was proposed as a way to modify the 8 

selectivity and analysis time. This gave rise to a new chromatographic mode which was called 9 

micellar liquid chromatography (MLC). However, with conventional columns, solutions 10 

containing only surfactant were too weak and yielded poor peak shape. This was remediated 11 

by the addition of a small amount of organic solvent to the pure micellar mobile phase. Since 12 

then, in order to preserve the existence of micelles, analysts working in MLC avoid usually 13 

high amounts of organic solvent in the mobile phase. Nevertheless, there is no reason to 14 

neglect the potentiality of mobile phases containing a surfactant above its CMC in water and a 15 

high concentration of organic solvent, where micelles cannot be formed (submicellar 16 

conditions). This chromatographic mode has been called high submicellar liquid 17 

chromatography (HSLC), and can be considered as a bridge between MLC and conventional 18 

RPLC. There is no sudden breakdown of micelles with addition of organic solvent, and 19 

accordingly, the transition between MLC and HSLC is easily not noticeably. For this reason, 20 

in the literature, some authors have claimed to be working in MLC conditions, without being 21 

aware that no micelles were formed. The combination of stronger elution strength, larger 22 

selectivity and improved peak shape, with respect to MLC and conventional RPLC, makes 23 

HSCL a promising chromatographic mode, which achieves in practical times separations of 24 

compounds unresolved, or highly retained with other RPLC modes. This work offers some 25 

insights on the interactions that occur inside the chromatographic column, the modification of 26 

the stationary and mobile phases, modelling of retention, peak shape implications, and 27 

separation performance in HSLC, in comparison to MLC and conventional RPLC. 28 
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1. Introduction 34 

The addition of surfactants to a hydro-organic mobile phase in reversed-phase liquid 35 

chromatography (RPLC) produces significant changes in the chromatographic behaviour 36 

[1−3]. Particularly interesting is the use of ionic surfactants, such as sodium dodecyl sulphate 37 

(SDS) and cetyltrimethylammonium bromide (CTAB), in the analysis of compounds bearing 38 

an opposite charge. The surfactants are significantly adsorbed on the surface of the non-polar 39 

stationary phase (usually of the bonded alkylsilica gel type), creating a charged asymmetric 40 

bilayer, which acts as a dynamic ion-exchanger for ionic analytes. Oppositely charged solute 41 

ions are attracted by the adsorbed surfactant ions and yield high retention, whereas solute ions 42 

with similar charges as the surfactant are repulsed and elute with the void volume. 43 

When the surfactant is added at low concentration (below the critical micellar 44 

concentration, CMC), the stationary phase is progressively coated with surfactant, and the 45 

mobile phase is comprised of a rather small amount of free monomers (Fig. 1a). Above the 46 

CMC, the column reaches saturation or only small changes are produced in the surfactant 47 

coating depending on the column and surfactant nature [4]. However, the mobile phase 48 

experiences major changes, since the surfactant monomers aggregate to form small clusters or 49 

micelles (with the non-polar hydrocarbon chain in the monomers oriented towards the micelle 50 

core, and the neutral or ionic head towards its surface) (Fig. 1b and d). The mobile phase may 51 

contain only water, buffer and micelles, which play the role of an organic modifier. Micelles 52 

notably modify the solubility and transference of solutes between mobile phase and stationary 53 

phase, which have particular implications with regard to selectivity, analysis time and 54 

efficiency, as first demonstrated by Armstrong and Henry in 1980 [5]. Owing to the presence 55 

of micelles, this chromatographic mode was named pseudophase liquid chromatography or 56 

micellar liquid chromatography (MLC). In this mode, solute separation is achieved on the 57 

basis of the differential partitioning between bulk solvent and monomers of surfactant coating 58 
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the stationary phase, and between bulk solvent and micelles. However, with conventional 59 

columns, solutions containing only surfactant are too weak and yield poor peak shape. For 60 

this reason, the addition of a small amount of organic solvent to the mobile phase was soon 61 

suggested to enhance the elution strength and efficiency [1,6].  62 

The influence on the retention of the organic solvent (below or above the CMC) is similar 63 

to that for systems without surfactant: the retention times of analytes decrease as a result of 64 

the decreased polarity of the bulk solvent. However, an additional reduction in the retention is 65 

produced by the competition between organic solvent molecules and surfactant monomers for 66 

adsorption sites, which reduces the amount of surfactant adsorbed on the stationary phase [7]. 67 

Concomitantly, the efficiency is enhanced due to the thinner surfactant coating. Such is the 68 

improvement in chromatographic performance in the presence of an organic solvent that most 69 

analyses in MLC are performed with mobile phases containing both surfactant and organic 70 

solvent [1,8].  71 

The presence of surfactant in the mobile phase allows the use of organic solvents scarcely 72 

miscible with water, reaching concentrations useful in RPLC. However, in spite of the wide 73 

range of compatible solvents, only the aliphatic alcohols 1-propanol, 1-butanol and 1-pentanol 74 

are routinely used in MLC to develop analytical methods, being 1-propanol the most 75 

common. Surprisingly, there are only few reports with acetonitrile, which is the solvent of 76 

choice in conventional RPLC. Some authors have recommended the use of methanol or 77 

ethanol, but their elution strength in the presence of surfactant is rather weak. 78 

In MLC, the concentration of organic solvent is limited to preserve the integrity of 79 

micelles. At high concentrations of organic solvent, micelles breakdown (i.e. disaggregate) 80 

[9]. In this situation, interactions between analytes and free surfactant monomers (instead of 81 

micelles) will coexist in the bulk solvent with interactions with the still surfactant-modified 82 

stationary phase (Fig. 1c). This gives rise to a new chromatographic mode inbetween MLC 83 
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and conventional RPLC, which is the topic of this review [2,10], which has been called high 84 

submicellar liquid chromatography (HSLC). 85 

Consequently, depending on the concentration level of surfactant and organic solvent, 86 

four RPLC modes (with transition regions) are possible, each with particular performances 87 

(Fig. 2):  88 

(i) Hydro-organic (conventional) RPLC without additives other than the buffer components. 89 

(ii) Ion-pair chromatography (IPC), where the concentration of surfactant (an ionic 90 

surfactant) is below the CMC, and the organic solvent content is similar or larger than the 91 

usual in conventional RPLC. The mobile phase contains a rather small amount of 92 

surfactant monomers (Fig. 1a). Since there is a pre-micellization situation, this 93 

chromatographic mode has been also called submicellar liquid chromatography, which 94 

was a rather common name in the first reports in MLC [11]. 95 

(iii) Micellar-liquid chromatography, where the mobile phase contains a rather small amount 96 

of monomers of surfactant (ionic or non-ionic), and pure micelles (without organic 97 

solvent), or hybrid micelles (built with surfactant monomers and organic solvent 98 

molecules). In the latter case, micelles are in a hydro-organic environment (Fig. 1b).  99 

(iv) High submicellar liquid chromatography (HSLC), where the surfactant (ionic or 100 

non-ionic) is at a concentration where micelles are formed in water, and the organic 101 

solvent content is high. This prevents the formation of micelles: only surfactant 102 

monomers exist in the mobile phase (a rather large amount), which are dissolved in a 103 

hydro-organic medium (Fig. 1c). The name HSLC refers to a quantitative difference with 104 

IPC (submicellar liquid chromatography) with respect to the concentration of surfactant 105 

monomers in the mobile phase, which gives rise to a particular behaviour. 106 

This work is concerned with the main features of HSLC. The chromatographic 107 

performance under micelle breakdown conditions in the mobile phase has still been scarcely 108 
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studied. However, some attractive advantages have been observed with respect to MLC and 109 

hydro-organic RPLC, in terms of analysis time, selectivity and peak shape, which deserve 110 

some attention [2,10,12–15]. This review tries to put forward a unifying description of the 111 

behaviour of HSLC among the surfactant-mediated chromatographic modes. 112 

 113 

2. Solute interactions with stationary phase and mobile phase 114 

In IPC, an ion-exchange retention mechanism with the stationary phase is dominant and 115 

the interaction with the ionic surfactant in the mobile phase is rather small (Fig. 1a) [16]. 116 

In MLC, both ionic and non-ionic surfactants are used, with SDS by far the most common 117 

[1,8]. The stationary phase reaches saturation and the interaction of solutes with the adsorbed 118 

surfactant is again the prevalent equilibrium [1]. However, a secondary equilibrium is 119 

established between solutes and micelles in the mobile phase, which is affected by the 120 

presence of organic solvent (Fig. 1b) [17]. In general, the retention increases with respect to 121 

conventional RPLC, but in a smaller amount compared to IPC at similar organic solvent 122 

contents due to the presence of micelles in the mobile phase, which enhance the solubilization 123 

capability [18]. As long as a certain amount of surfactant remains adsorbed and micelles exist, 124 

the retention mechanism will be the typical of the micellar mode. Finally, in HSLC, where 125 

micelle disaggregation occurs, the retention mechanism will depend on the amount of 126 

surfactant that still remains adsorbed on the alkyl-bonded phase, and on the interaction of 127 

solutes with surfactant monomers in the bulk mobile phase, which replace the micelles 128 

(Fig. 1c). It can be expected that, without surfactant adsorption, the observed effect on the 129 

retention and resolution of analytes would be solely a result of the interactions with the 130 

surfactant monomers in the mobile phase, in addition to the interaction with the non-polar 131 

bonded phase and organic solvent.  132 

133 
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The adsorption of a surfactant onto the stationary phase can occur in at least two ways:  134 

(i) (i) The long alkyl or polyoxypropylene chains of the surfactant would interact with the alkyl 135 

bonded chains on the stationary phase and the hydrophilic head groups would stick out in 136 

contact with the polar solution, as revealed by nuclear magnetic resonance (NMR) studies 137 

[19], giving rise to an open micelle-like structure [20,21]. This is the situation that is 138 

expected with SDS and C18 bonded silica (Fig. 1a–c).  139 

(ii) (ii) In the case of cationic surfactants, the ionic head group can be strongly adsorbed, the 140 

stationary phase would behave then as a more hydrophobic surface. This is very likely 141 

the case of CTAB adsorbed on a silica surface, which gives rise an RPLC mode [22] 142 

(Fig. 1d). 143 

In the case of an anionic surfactant, such as SDS, the negatively charged asymmetric 144 

bilayer with SDS affects the penetration depth of solutes into the bonded phase [23,24]. The 145 

adsorbed surfactant monomers attract strongly cationic basic drugs increasing their retention, 146 

as a consequence of a combination of electrostatic (with the anionic sulphate group) and 147 

hydrophobic (with the uncovered alkyl-bonded layer and surfactant chain) interactions, the 148 

latter being weaker compared to a hydro-organic system [3].  149 

 150 

3. Micellar or submicellar conditions? 151 

3.1. Micelle breakdown in the presence of organic solvent 152 

The organic solvent molecules can bind the micelles and modify their shape. Short-chain 153 

alcohols (ethanol and propanol) interact with the micelle surface, reducing the repulsions 154 

among the ionic heads of the surfactant monomers forming the micelle, whereas more 155 

hydrophobic alcohols (butanol and pentanol) are inserted into the non-polar micelle. This 156 

affects micelle formation and the partitioning equilibria [25,26]. 157 
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Organic solvent molecules can prevent the formation of micelles [9,26]. Therefore, the 158 

amount of organic solvent that can be added in MLC is limited not only by its solubility, but 159 

also by micelle disaggregation: depending on the nature of the surfactant and organic solvent, 160 

there is a limiting concentration of organic solvent above which micelles do not occur 161 

anymore. Thus, for example, it is well accepted that SDS micelles are disrupted at 162 

concentrations (v/v) above 30–40% methanol, 30% ethanol, 22% 1-propanol and 30% 163 

acetonitrile, although these values are not conclusive [9]. Also, CTAB micelles do not exist in 164 

solutions with more than 20% methanol [11]. It should be also noted that because of their 165 

geometry, some surfactants, such as tetraheptylammonium bromide (THPA), are not able to 166 

form micelles at any condition [25].  167 

The accurate evaluation of micelle disaggregation at increasing organic solvent contents 168 

is problematic, since the transition to a situation where micelles do not exist is gradual (there 169 

is no sudden breakdown of micelles), with a progressive reduction in the aggregation number 170 

[27]. This fact, and the absence of remarkable changes in the chromatographic behaviour 171 

when micelles breakdown, do not allow knowing exactly if micelles still exist. It is thus not 172 

surprising that, in the literature, some authors using high concentrations of organic solvent 173 

have claimed to be working in MLC conditions, without being aware that no micelles were 174 

formed (Table 1) [28–35]. These reports correspond thus to the HSLC mode. 175 

 176 

3.2. Determination of the critical micellar concentration 177 

In the presence of organic solvent, micelle parameters, such as the CMC, are altered. 178 

Thus, in order to know the existence of micelles, it is convenient to determine the CMC value 179 

at different conditions. For an ionic surfactant, this can be easily carried out through a 180 

conductimetric titration. For this purpose, the surfactant is added below and above the CMC. 181 

Then, the intersection of the straight-lines fitted in each region representing the conductance 182 
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versus the surfactant concentration is obtained after the needed corrections for changing 183 

volumes [36]. Micelle modification can be also monitored by following changes in the surface 184 

tension of surfactant solutions. The drop weight procedure is based on the influence of this 185 

property on the size of a drop formed when the liquid is suspended from a glass tip. 186 

Information about micelles can be provided by weighting a given amount of drops delivered 187 

from a burette at changing surfactant concentration [2].  188 

The changes in the drop weight for SDS upon addition of an organic solvent have been 189 

observed to correlate with the changes in retention and peak shape for basic compounds [2]. 190 

This also revealed some micelle perturbation and possible disaggregation. Thus, the drop 191 

weight was observed to remain approximately constant in the 5–15% acetonitrile range, 192 

followed by a gradual decrease in the 20–40% range (with 0.075–0.15 M SDS). In the same 193 

report, the change in the retention behaviour indicated that above 20% acetonitrile, the micelle 194 

structure was significantly altered, with a likely breakdown ca. 30% acetonitrile. The addition 195 

of 1-propanol instead of acetonitrile to an SDS micellar solution resulted in a different 196 

behaviour: the drop weight decreased up to 20–25% 1-propanol. Also, it did not depend on 197 

the surfactant concentration above 15% 1-propanol [27]. 198 

There is much work on the determination of the CMC for SDS, whose values in water are 199 

in the range 8.2–8.4 mM [1]. This value increases upon addition of both acetonitrile and 200 

methanol (e.g. at 20% acetonitrile, it is ~30 mM), while decreases in the presence of the less 201 

polar longer alcohols (ethanol, 1-propanol, 1-butanol and 1-pentanol), with an increasing rate 202 

depending on the chain length [26]. This means that the surfactant distribution is shifted 203 

towards the bulk solvent or the micelles, respectively. However, the effects of the addition of 204 

organic solvent to a micellar mobile phase is not very dramatic until a concentration of the 205 

organic solvent is reached where micelles disaggregate, so that the micellar phase is converted 206 

into a submicellar phase.  207 
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In the presence of 1-propanol, the CMC for SDS was estimated to be: 7.2, 6.3, 6.0 and 208 

5.9 mM in 1.5, 3.0, 4.5 and 6% 1-propanol [37], and 5.75, 4.65, 3.4 and 2.7 mM in 5, 10, 15 209 

and 20% 1-propanol, respectively [26]. A wide compilation of CMC values for different types 210 

of surfactants can be found in Ref. [1]. 211 

 212 

4. Surfactant adsorption 213 

4.1. Stationary phase saturation by surfactant in aqueous medium 214 

The adsorbed amount of surfactant on an RPLC column increases rapidly and reaches a 215 

plateau above a certain concentration of surfactant. Berthod et al. [38–40] reported adsorption 216 

isotherms for SDS and CTAB on five Hypersil stationary phases of various polarities: three 217 

apolar silica (methyl bonded silica SAS, octyl bonded silica MOS, and octadecyl bonded 218 

silica ODS), and two polar silica (cyanopropyl bonded silica CPS and naked silica). These 219 

authors found that the adsorbed amount of surfactant for a saturated column was similar on 220 

alkyl-bonded silica (C1, C8, and C18, with the C1 phase adsorbing the largest amount instead 221 

of the more hydrophobic C18 phase) (4.0–5.0×l0
–6

 mol/m
2
), and was only 2.5×l0

–6
 mol/m

2
 of 222 

SDS and 3.5×l0
–6

 mol/m
2
 of CTAB on CPS Hypersil, and 0.5l0

–6
 mol/m

2
 of SDS and 223 

2.0l0
–6

 mol/m
2
 of CTAB on naked silica. The higher adsorbed amount for CTAB with 224 

respect to SDS was explained by the attraction of the CTAB cations to the ionized silanol 225 

groups, whereas the higher amount of adsorbed surfactant for the C1 bonded phase was 226 

attributed to mixed polar and hydrophobic interactions, confirming the assumption that 227 

hydrophobic interactions are not the only ones responsible for surfactant adsorption. The 228 

collapse of hydrocarbon moieties of long alkyl bonded phases on the surface, in the presence 229 

of water (which reduces the number of sites for hydrophobic interactions [41]), has also been 230 

suggested as the reason for the low surfactant adsorption on the C18 silica as compared to C1 231 

bonded silica. 232 
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Maximal adsorbed SDS was found close to one surfactant molecule per bonded moiety 233 

for C1 and C8 grafted phases, and close to two SDS molecules for a C18 phase [40]. 234 

Examination of the hysteresis loop for a C18 material modified with surfactant provided 235 

additional information about the extent of stationary phase modification [24,42]. The BET 236 

surface area (surface available to the nitrogen molecules at 77K) was found to decrease about 237 

60% for both non-ionic and anionic surfactants (Brij-35 and SDS, respectively). The general 238 

pore shapes of the parent C18 material appeared to be retained with the surfactant-modified 239 

material. The adsorbed surfactant molecules seem to fill part of the silica pore volume, 240 

producing a thick continuous film on the interior walls, rather than completely filling the 241 

pores. On doing so, the stationary phase surface area is reduced. 242 

There is some disagreement on the conditions needed to reach stationary phase saturation 243 

by surfactant. Some authors have found a constant amount of adsorbed surfactant for ionic 244 

surfactants above the CMC [36,43]. This has been explained by the fact that the concentration 245 

of free surfactant monomers in bulk solution is constant and equal to the CMC, whereas only 246 

the concentration of micelles increases as the total surfactant concentration is raised (and the 247 

micelles are not adsorbed). In contrast, according to Berthod et al., the assumption that the 248 

column is saturated with surfactant above the CMC seems to be not the case for all 249 

surfactant/stationary phase combinations [38,39]. Surfactant adsorption may continue with an 250 

increase as much as 20% of the total sorption at surfactant concentrations greater than twice 251 

the CMC. In fact, a plateau with constant adsorbed amount for SDS was only observed with 252 

C18 Hypersil. 253 

 254 

4.2. Adsorption isotherms 255 

When the concentration of an analyte in the solution in contact with the stationary phase 256 

(i.e. the adsorbent) is being increased, its concentration on the adsorbent steeply rises at first, 257 
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but then the rate of increase of the adsorbed amount gradually diminishes as it approaches the 258 

maximal capacity of the adsorbent (i.e. its saturation). This behaviour in RPLC systems is 259 

most often described by the Langmuir isotherm, or by models departing from it [44]: 260 

cb

ca
Q




1
           (1) 261 

where Q and c are the analyte concentration in the stationary phase and mobile phase, 262 

respectively, a is the distribution coefficient at infinite dilution, and b is related to the 263 

saturation capacity of the adsorbent, Qs = a/b. According to the Langmuir isotherm, this 264 

should be achieved at infinite analyte concentration in the mobile phase. However, 265 

experimental adsorption isotherms for surfactants in RPLC systems showed profiles different 266 

from the isotherms of simple organic compounds. The isotherms presented an abrupt break, 267 

and the adsorbed amount remained approximately constant above a certain value of the 268 

surfactant concentration in bulk solution equal or higher than the CMC [38,39].  269 

Jandera and Fischer modified the Langmuir isotherm to describe the distribution of 270 

surfactants between stationary phase and mobile phase in the submicellar concentration range 271 

[36]. The maximal adsorbed concentration was assumed to correspond to cs = CMC: 272 

s

CMC

s

s

s

CMC

1'
1

'

'1

'

c
Q

a

ca

cb

ca
Q














        (2) 273 

where a' and b' are constants for the modified Langmuir isotherm. This equation applies only 274 

for cs < CMC, whereas Q = QCMC (the amount adsorbed at the plateau) for cs ≥ CMC. Eq. (2) 275 

should be taken as a first approximation, since as indicated, surfactant adsorption may 276 

continue above the CMC. 277 

278 
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4.3. Removal of surfactant from the stationary phase in the presence of an organic solvent 279 

In surfactant-mediated chromatographic systems, the surfactant modifies the stationary 280 

phase by coating it totally or partially. The organic solvent added to the mobile phase reduces 281 

the coating thickness, which depends on the surfactant/organic solvent ratio. In fact, moderate 282 

amounts of alcohols added to an SDS micellar mobile phase have been found to reduce 283 

significantly the amount of adsorbed surfactant, with a clear trend that depends on the 284 

molecular weight of the alcohol (i.e. its hydrophobicity): while the addition of 5% methanol 285 

reduced the amount of SDS by ca. 10%, 5% 1-pentanol reduced it by ca. 50% [24]. The 286 

influence of methanol was found to be more significant with the anionic SDS than with the 287 

cationic CTAB and Septonex (carbethoxypentadecyl trimethyl ammonium bromide) [11]. 288 

In addition to reducing the coating thickness (and consequently, the carbon loading), the 289 

addition of alcohols is also expected to influence the fluidity/rigidity of the surfactant/C18 290 

bonded ligand structure, just as their presence alters the fluidity of the micellar aggregate 291 

structure in the mobile phase [42]. This should improve the efficiency, since the solute 292 

diffusion coefficient ought to increase as the microviscosity of the phase decreases. In the 293 

limit, the BET surface area, the cumulative pore volume and chromatographic efficiency will 294 

reapproach that of the unmodified C18 stationary phase. 295 

Berthod and Roussel reported a linear decrease in the adsorbed amount of SDS upon 296 

addition of several organic solvents, including methanol and 1-propanol [40]. The desorption 297 

rate of SDS for methanol was 9-folded smaller compared to 1-propanol. The maximal 298 

concentration of both modifiers examined by these authors was 5% methanol and 3% 299 

1-propanol. If the linear patterns were followed at larger concentrations, the surfactant would 300 

be completely desorbed for 95% methanol and 10% 1-propanol. However, the assumption of 301 

a linear decrease of adsorbed surfactant with increasing alcohol contents beyond the studied 302 

range is questionable. 303 
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Li and Fritz carried out experiments with several non-ionic surfactants, such as Tween 60 304 

and Pluronic L-31, and ionic surfactants, such as the anionic SDS and DOSS 305 

(dioctyisulfosuccinate), and the cationic CTAB or THPA, in the presence of 60% acetonitrile 306 

[10]. The non-ionic surfactants contained alternating hydrophobic polyoxypropylene and 307 

hydrophilic polyoxyethylene segments, and the ionic ones were amphiphilic compounds with 308 

one or more long alkyl hydrophobic chains and a hydrophilic head group varying in chemical 309 

nature. The authors concluded that significant surface adsorption did not occur in the presence 310 

of 60% acetonitrile, by observing that there was no lost of surfactant from the solution, and no 311 

column re-equilibration time was needed to obtain a stable baseline. 312 

More recently, the adsorption of SDS on a C18 column, in the presence of up to 50% 313 

acetonitrile was indirectly demonstrated based on the interaction of cationic basic compounds 314 

(β-blockers) with the free silanols on the column [14]. When SDS is added to the mobile 315 

phase, the free surfactant monomers bound to the C18 chains mask the free silanols on the 316 

siliceous support that are the origin of the poor efficiencies and tailing peaks for basic 317 

compounds in hydro-organic RPLC with conventional columns [45]. Meanwhile, the 318 

stationary phase adopts a negative charge that attracts the cationic solutes. This attraction 319 

increases so remarkably the retention times, that for relatively low polar β-blockers, these are 320 

easily beyond 100 min in mobile phases containing only the surfactant (a significantly larger 321 

retention than in conventional RPLC with hydro-organic mixtures) [2]. The improvement in 322 

peak shape and the increased retention confirm the coating of the stationary phase by the 323 

anionic surfactant. 324 

A comparison of the relative effect of different alcohols in the SDS micellar mobile 325 

phases on the retention, elution strength and peak shape for a set of β-blockers was observed 326 

to parallel their ability to desorb SDS surfactant molecules from a C18 bonded stationary 327 

phase [27]. The long retention times and high efficiencies found with a C18 Kromasil column 328 
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and mobile phases containing SDS and 50–60% methanol suggested that a significant amount 329 

of surfactant still covered the stationary phase, and for 35% 1-propanol, the surfactant layer 330 

was not either desorbed totally. This agrees with a previous observation on the tight insertion 331 

of the surfactant alkyl-chains in the alkyl moieties of the bonded layer of the densely grafted 332 

phases [46].  333 

 334 

5. Modelling the retention 335 

 Modelling the retention gives some insight on the chromatographic behaviour of solutes. 336 

It is also useful to predict the retention and optimize the separation conditions. Next, the 337 

behaviour for HSLC is compared to that observed for conventional RPLC and MLC. 338 

 339 

5.1. Effect of the organic solvent on the chromatographic behaviour 340 

In conventional RPLC, the elution behaviour is classically modelled as a quadratic 341 

relationship between the logarithm of the retention factor (log k), and the volume fraction of 342 

organic solvent in the hydro-organic mixture (φ).  343 

2

1110log  ccck           (3) 344 

where c0, c1 and c11 are regression coefficients with characteristic values for a given solute 345 

and column/solvent system, being c0 the logarithm of the retention factor in water. The sign of 346 

c1 is negative, since the retention decreases as the concentration of organic modifier increases. 347 

The dependence of the retention factor on the concentration of organic solvent in MLC 348 

and HSLC can be described by the same form of equation. Thus, for SDS and methanol, and 349 

10–30% methanol where micelles are present, or 40−60% methanol where micelles do not 350 

exist, the plots were found to be almost linear, although with different slopes [13]. 351 

352 
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5.2. Three-phase equilibrium model in surfactant-mediated systems 353 

In MLC, a three-phase equilibrium model relating the retention factor to the 354 

concentration of micelles has been proposed (Figs. 1b and d) [47]. For an aqueous micellar 355 

solution, a convenient way to describe the retention is the following [48]: 356 

][][
1][11

10

AS

AM

ASAS

AM MccM
K

K

KK

MK

k



       (4) 357 

where [M] is the concentration of surfactant monomers involved in micelle formation 358 

(i.e. surfactant concentration minus the CMC), and KAS and KAM are the association constants 359 

between solute and stationary phase, and solute and micelles, respectively; c0 and c1 are 360 

regression coefficients. The accuracy of Eq. (4) has been widely verified, with experimental 361 

errors usually below 2%. This equation is also valid at fixed organic solvent content. Li and 362 

Fritz proposed Eq. (4) to describe the retention behaviour in HSLC at constant organic 363 

solvent, as a function of the concentration of free surfactant monomers ([S]), instead of the 364 

micellized surfactant [10]. 365 

In agreement with Eq. (4), the retention of neutral solutes and solutes with a charge 366 

opposite to that of the surfactant decreases as [M] (or [S]) increases, if the analytes are 367 

associated to the micelles (or surfactant monomers). On the other hand, the association of 368 

solutes with the stationary phase decreases with the percentage of organic solvent in the 369 

mobile phase, which should be explained (at least partially), by the reduction of the surfactant 370 

layer on the stationary phase. With SDS, the retention factors decrease upon the addition of 371 

organic solvents in the order: methanol < acetonitrile < ethanol < 1-propanol, which correlates 372 

with the extent of surfactant desorption from the stationary phase (stronger for 1-propanol) 373 

[7]. 374 

In MLC with hybrid mobile phases (containing surfactant and organic solvent), the 375 

mechanistic model (Eq. (4)) can be reformulated as [48]:  376 
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where KMD, KSD and KAD are constants that account for the displacement of the partitioning 378 

equilibria by the organic solvent. The KSD coefficient has been found to be significant only for 379 

highly hydrophobic compounds. When this is not the case, Eq. (5) can be simplified to: 380 
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where c0, c1, c11 and c12 are again regression coefficients, all with positives values. A similar 382 

approach has been found to be valid for the submicellar modes. The following model 383 

describes accurately the retention in HSLC [14,15]: 384 
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where the quadratic and cubic terms in φ were added to account for the larger role of the 386 

organic solvent in the mobile phase; KAM and KMD refer to the interaction of solutes with 387 

surfactant monomers instead of micelles, Kφ is a regression coefficient similar to c11 in Eq. 388 

(3), and HSC

AMK describes the partitioning between bulk water and the free monomers. 389 

A simplified equation is: 390 
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The elution behaviour of 10 β-blockers was studied using a Kromasil C18 column, in 392 

wide ranges of SDS (0.075–0.15 M) and acetonitrile (5–50% (v/v)), involving the micellar 393 

and high submicellar regions [14]. Eqs. (6) and (8) yielded excellent descriptions of the 394 

retention in each region, respectively. When the whole search space was considered, the use 395 

of specific models for different regions of the factor space complicated the exploration of the 396 
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optimal experimental conditions. Therefore, a model that fitted satisfactorily the elution 397 

behaviour in the whole domain (5–50%) was proposed (Eq. (7)). However, as expected, the 398 

quality of the predictions was better when the domain was divided in the micellar and 399 

submicellar regions, using specific models (Eqs. (6) and (8)) [15]. 400 

 401 

6. Peak shape for basic compounds 402 

In conventional RPLC, the stationary phase is scarcely modified when the organic solvent 403 

content is changed, at least in narrow composition ranges [21,50]. In the surfactant-mediated 404 

modes, the stationary phase nature changes significantly with the mobile phase composition, 405 

since the surfactant monomers associate to the alkyl-bonded chains (Fig. 1). This coating is 406 

narrowed upon addition of an organic solvent, which dissolves the surfactant [7]. 407 

As commented in Section 4.3, the peak width and symmetry of basic compounds eluted 408 

from alkyl-bonded silica, which depend on the mass transfer kinetics, are excellent tools to 409 

probe the surfactant layer on the stationary phase in an SDS/organic solvent system [2,27]. 410 

The undesirable interaction of positively charged basic compounds with ionized silanols on 411 

such stationary phases is a slow process, which results in poor peak shape (broad and 412 

asymmetrical peaks). This makes the analysis of these compounds by conventional RPLC 413 

problematic. Under submicellar conditions at low surfactant concentration, the adsorbed SDS 414 

monomers form a layer that masks efficiently the silanols on the siliceous support, preventing 415 

their interaction with the basic compounds. These instead interact with the anionic sulphate 416 

group in the surfactant through an ion-exchange mechanism, which seems to be a fast process. 417 

The result is a large increase in column efficiency. At high organic solvent contents, the 418 

surfactant will be significantly desorbed, favouring again solute penetration and interaction 419 

with the buried silanols: the efficiency deteriorates. 420 
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In the micellar mode without organic solvent, where the concentration of surfactant is 421 

larger, the efficiency deteriorates due to the high carbon loading in the thicker SDS layer, 422 

which gives rise to poor stationary-phase diffusion [24]. The MLC literature contains 423 

numerous comments on the reduced efficiency for compounds of different nature eluted with 424 

micellar mobile phases containing exclusively a surfactant (either ionic or non-ionic). Organic 425 

solvent addition and temperature raise have been given as solutions to decrease the amount of 426 

adsorbed surfactant, and improve the efficiency [1,8]. However, at increasing solvent 427 

contents, after reaching a plateau, further surfactant desorption will allow the interaction of 428 

basic drugs with the unmasked ionized silanols on the C18 stationary phase, yielding again 429 

poor efficiency and skewness. 430 

In HSLC (obtained at high surfactant and organic solvent contents), the efficiency has 431 

been observed to be similar to that in IPC, and often larger than in the micellar mode. This is 432 

apparently due to the thinner SDS layer, which masks the silanols allowing sufficiently large 433 

solute diffusion. Wherever enough surfactant coats the stationary phase (up to 60% methanol, 434 

40% ethanol, 35% 1-propanol, and 50% acetonitrile), the efficiency will be high. 435 

In the literature, the comparison of peak shapes is usually made based on the individual 436 

or mean values of the efficiencies (or widths) and asymmetries, for several compounds. 437 

A main problem associated to the use of these mean values is that different conditions and 438 

compounds give rise to different elution strengths, and consequently, the retention time ranges 439 

change. However, owing to the extra-column broadening contribution to the global variance 440 

(which becomes more significant as retention decreases), only the efficiencies for peaks 441 

eluting at similar retention times should be compared. The linear relationships between the 442 

left and right half-widths and the retention times (which have been called peak half-width 443 

plots) allow a fairer comparison of the behaviour under different conditions [51,52]: 444 

445 
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0RA AtmA            (9) 446 

0RB BtmB            (10) 447 

where A and B are the peak half-widths, which are conveniently measured at 10% peak 448 

height), tR is the retention time, mA and mB are the slopes of the linear correlations, and A0 and 449 

B0 the corresponding intercepts. Note that the peak half-width plots are indeed parabolic, but 450 

this is only evident for wide ranges of retention times. 451 

Eqs. (9) and (10) allow the prediction of the peak widths and asymmetries at different 452 

retention times, and provide useful information to characterize the column performance: the 453 

sum of slopes (mA + mB) represents the peak broadening rate, and the ratio mB/mA the peak 454 

asymmetry inside the chromatographic column. In a comprehensive study, the behaviour of 455 

acetonitrile and the alcohols methanol, ethanol and 1-propanol on the peak shape of a set of 456 

basic compounds (β-blockers) eluted with hydro-organic, micellar and submicellar mobile 457 

phases was examined, using conventional silica-based columns [52]. The following 458 

observations were made: 459 

(i) The peak broadening rate (mA + mB) was significantly smaller in the surfactant-mediated 460 

modes compared to the hydro-organic mode. 461 

(ii) In the hydro-organic mode, peak deformation was significant. The lines diverged with 462 

mB/mA usually in the range 2.5–5, corresponding to tailing peaks.  463 

(iii) The peaks were nearly symmetrical in the presence of surfactant and organic solvent 464 

(i.e. mB/mA ≈ 1). The peak half-width plots almost coincided, being parallel, or 465 

diverging/converging only slightly. 466 

(iv) The best peaks for β-blockers, in the presence of SDS, were obtained with acetonitrile 467 

(compared to ethanol and 1-propanol, which behaved similarly). This was explained by a 468 

larger reduction in the adsorbed surfactant layer on the C18 column [15,27]. It should be 469 

noted that the peak broadening rate in acetonitrile-water mixtures was also smaller (7–8% 470 
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against 8–15% for propanol) [52]. With a Kromasil C18 column and acetonitrile, the 471 

poorest efficiencies were obtained for the hydro-organic mode (N = 800–1700). These 472 

improved in the micellar mode (N = 1000–3300). However, the most outstanding 473 

enhancements were observed in the submicellar modes, with N values frequently in the 474 

4000–9000 range [2].  475 

 476 

7. Separation performance 477 

7.1. Surfactant elution strength  478 

As commented, the addition of a low concentration of surfactant into a conventional 479 

mobile phase in RPLC alters the stationary phase surface and the partitioning behaviour of 480 

analytes. The excess surfactant is dissolved in the hydro-organic mobile phase as free 481 

monomers, associated in small clusters or forming micelles. These entities and the organic 482 

solvent molecules are responsible of the elution. The magnitude of the effect can be 483 

modulated by varying both the nature and concentration of the surfactant and organic solvent. 484 

In the pioneering work by Li and Fritz on the use of surfactants at concentrations above their 485 

CMC in aqueous solution but without micelle formation, surfactants with different elution 486 

strengths were investigated in the presence of 60% acetonitrile [10]. The degree of reduction 487 

in the retention times of analytes was determined by the hydrophobic chain length and 488 

chemical nature of the surfactant. In the case of non-ionic surfactants (as Tween 60), used to 489 

separate a set of alkylphenols, hydrogen bond formation between the hydroxyl groups in the 490 

surfactant and those in the phenols probably took place in addition to hydrophobic 491 

interactions between the hydrophobic parts of analytes and Tween 60. Later, the authors 492 

studied mobile phases containing mixtures of two surfactants in the presence of 40–60% 493 

acetonitrile, where no co-micellization was expected [12]. The elution strength was increased 494 

in the presence of the surfactants. 495 
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In the comprehensive study with β-blockers described above [27], a significant difference 496 

in behaviour was found between IPC and MLC/HSLC, when the concentration of SDS in the 497 

mobile phase was increased. In IPC, the retention was progressively larger, since the 498 

surfactant-coating was still growing and the amount of surfactant monomers in the mobile 499 

phase was rather low. In MLC/HSLC, the effect of the surfactant was opposite to IPC (the 500 

retention decreased with the addition of more surfactant), as a consequence of the additional 501 

interactions with micelles or free surfactant monomers in the mobile phase. In MLC, the 502 

surfactant coating reaches or is next to saturation, and the amount of micelles in the mobile 503 

phase (to which the cationic solutes are strongly associated) increases. In HSLC, the 504 

surfactant coating has been reduced significantly with regard to MLC, and the added 505 

surfactant monomers (to which the cationic solutes are also associated) remain free in the 506 

mobile phase. Both micelles (in MLC) and free surfactant monomers (in HSLC) increase the 507 

solubilization capability of the mobile phase, and accordingly, the elution strength.  508 

A common topic in the MLC literature is the role of micelles in the chromatographic 509 

behaviour. Certainly, micelles increase the solubility of analytes, and contribute to their 510 

desorption from the stationary phase, with an elution strength often larger than that of the 511 

organic solvent. Thus, for β-blockers in MLC and HSLC, the surfactant (SDS) was 512 

significantly stronger than short chain alcohols and acetonitrile. The reason for this behaviour 513 

is the electrostatic association of the cationic drugs with the anionic micelles or surfactant 514 

monomers, which is stronger than the hydrophobic association with organic solvent 515 

molecules.  516 

 517 

7.2. Organic solvent strength 518 

In the surfactant-mediated modes, the organic solvent is seen as a secondary modifier, 519 

which can affect the micelle nature and displace the analyte partition equilibrium towards the 520 



 22 

bulk mobile phase. However, the role of the organic solvent is not far from that in a 521 

hydro-organic mixture. The loss of protagonism can be explained by its association with the 522 

micelles or surfactant monomers, which decreases its capability to interact with analytes. 523 

Since the stabilization with an organized structure (as the micelles) is stronger, disruption of 524 

micelles at high concentration of organic solvent is translated into a significant increase in the 525 

elution strength, which becomes similar to that observed with a hydro-organic mobile phase 526 

in the absence of surfactant. Thus, for example, a significant increase in the elution strength of 527 

acetonitrile (for 0.075-0.15 M SDS) was observed at increasing organic solvent contents: the 528 

slopes of the plots for 30−50% acetonitrile (the high submicellar region) were larger than for 529 

5–20% acetonitrile (the micellar region), with a transition region in the range 20–30% 530 

acetonitrile (Fig. 3) [2,14]. In the transition region, two effects happened that affected the 531 

retention: the micelles were being perturbed and the surfactant monomers covering the 532 

stationary phase desorbed (both significantly) by the organic solvent. However, no 533 

discontinuity was observed between the micellar and submicellar modes, at constant 534 

surfactant concentration. 535 

Non-linear dependences were achieved for log k versus φ (Eq. (3)) in sufficiently large 536 

concentration ranges, being the curves concave for the hydro-organic (without surfactant) and 537 

IPC modes, and convex for MLC/HSLC (as indicated above, the elution strength was 538 

progressively larger) (Fig. 3) [27]. At sufficiently large methanol and acetonitrile contents, the 539 

slopes of the curves obtained with SDS were similar to those without surfactant and a smaller 540 

amount of organic solvent. Thus, the slopes for 0.075 M SDS/50–60% methanol and 40–50% 541 

methanol-water, on the one hand, and for 0.075 M SDS/30–50% acetonitrile and 10–25% 542 

acetonitrile-water, on the other, were similar. Ethanol and 1-propanol were still stronger in the 543 

hydro-organic mobile phases, for the assayed ranges. Among the alcohols, only 1-propanol 544 

allowed the inspection of a wide range of experimental conditions. The feasible experimental 545 



 23 

domain was narrower for ethanol and methanol, especially for the latter, owing to its smaller 546 

elution strength. 547 

There is an extensive discussion on the association of solutes with micelles. However, 548 

there is little information about the effect of micelles or surfactant monomers on the organic 549 

solvent molecules that affect their behaviour as modifiers. Short-chain alcohols (i.e. methanol 550 

to 1-propanol) have a small penetration capability into SDS micelles. The binding constants 551 

(expressed as mole fraction ratio of organic solvent per surfactant molecule) are: 0.4, 1.1, and 552 

3.5 for methanol, ethanol, and 1-propanol, respectively, at 25
o
C [49,53]. These values 553 

correlate with the logarithm of the octanol-water partition coefficient of the solvents 554 

(log Po/w = 0.18, 0.48, and 2.2, respectively [54]). Log Po/w for acetonitrile is similar to that 555 

for ethanol (0.46). However, the effect of acetonitrile on the CMC of SDS is similar to that of 556 

methanol (i.e. the CMC increases at increasing concentration of organic solvent), and 557 

opposite to the effect of ethanol and 1-propanol (i.e. the CMC decreases) [26]. The relatively 558 

strong association of 1-propanol to the SDS micelles can explain the smaller elution strength 559 

below 15–25% 1-propanol for 0.02 and 0.04 M SDS. 560 

The weak elution strength of methanol, ethanol and acetonitrile force the use of higher 561 

concentrations of surfactant. Also, with methanol the mobile phases should contain a large 562 

amount of organic solvent to achieve convenient retention times, reaching often submicellar 563 

conditions. As commented, the retention times of positively charged basic compounds in the 564 

surfactant-mediated chromatographic modes are longer with regard to hydro-organic RPLC, 565 

owing to their strong attraction to the stationary phase. This was found for β-blockers at least 566 

up to 50% acetonitrile [2,27]. Owing to the increased retention, the surfactant-mediated 567 

modes allowed wider concentration ranges for the organic solvents than the hydro-organic 568 

mode, except for methanol [15,27]. In general, the concentration ranges for both surfactant 569 

and organic solvent should be selected to achieve enough retention for the most polar 570 
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compounds, and not excessive retention for the most apolar ones. The pump back-pressure at 571 

increasing concentration of both modifiers limits also their maximal content in the mobile 572 

phase. 573 

 574 

7.3. Gradient elution and accordion effect 575 

Gradient elution is commonly used to separate relatively complex mixtures of compounds 576 

in wide polarity ranges. In conventional RPLC, a gradient of organic solvent is generally 577 

applied to decrease the analysis time, since an increasing amount of organic solvent would 578 

result in a stronger eluent. IPC is less suitable for gradient elution, due to the strong 579 

dependence of the adsorbed amount of surfactant with the concentration of organic solvent in 580 

the mobile phase. This can make re-equilibration after the end of each run lengthy and 581 

tedious. In MLC, gradient elution by varying the surfactant is favoured because at moderate 582 

surfactant concentration, the composition of the stationary phase is independent of the 583 

concentration of micelles in the mobile phase during the gradient: the surfactant layer on the 584 

stationary phase depends only on the free surfactant concentration and a change in the total 585 

concentration serves only to change the concentration of micelles [55,56]. Therefore, the only 586 

re-equilibration process necessary before the next gradient run is flushing the 587 

chromatographic system with the initial mobile phase. However, this rapid gradient capability 588 

is not universal: significant surfactant adsorption is observed above the CMC for non-ionic 589 

surfactants. 590 

Gradient elution with organic solvent in MLC is, however, problematic, since along the 591 

gradient the organic solvent desorbs the surfactant. Going back to the initial conditions should 592 

require a long equilibration time. In HSLC, the surfactant layer is significantly thinner. 593 

Therefore, gradient elution by varying the organic solvent concentration is possible [10]. 594 

Since no surface adsorption is taking place, gradient elution can be very fast because no 595 
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re-equilibration of the column is required. In a recent report, a gradient method was designed, 596 

starting with a micellar eluent with a low concentration of butanol [57]. This allowed direct 597 

injection of plasma due to the solubilisation of proteins. After eluting the proteins, the 598 

concentration of butanol was increased (obtaining HSLC conditions) to reduce the analyte 599 

retention time and enhance the performance. Consequently, the authors demonstrated that the 600 

transition from MLC to HSLC has a potential interest. 601 

It appears, however, that the addition of a surfactant to the mobile phase at fixed 602 

concentration provides often similar benefits to conventional solvent gradient elution. The 603 

retention of all analytes decreases in the presence of surfactant but to different degrees. The 604 

surfactant complex late-eluting analytes (larger and more hydrophobic) more strongly, and 605 

thereby, reduces their retention times by a larger percentage than the retention times of earlier 606 

analytes. Consequently, the sample peaks are rather evenly distributed in the chromatogram. 607 

This is a noticeable gradient elution feature, although here only isocratic elution with a hybrid 608 

surfactant/organic solvent eluent is used [58]. This outstanding feature is found in both MLC 609 

and HSLC [1,10]. In these chromatographic modes, real gradient elution is therefore less 610 

necessary. 611 

 612 

7.4. Selectivity and resolution 613 

The main reason to modify both or either stationary phase and mobile phase is the 614 

improvement in analysis time and selectivity. These depend on the relative interactions of 615 

solutes with both phases. The additional interactions that take place inside a chromatographic 616 

column, in the presence of a surfactant, give rise to changes in the absolute and relative 617 

retention, and for some compounds to better peak profiles. Not only the elution strength but 618 

also the elution order and resolution performance (which depends on the selectivity and peak 619 

shape) are changed. This may enhance the performance with respect to conventional RPLC. 620 
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By choice of the nature and/or concentration of the modifiers (surfactant and organic solvent), 621 

the solvent strength and selectivity can be varied according to actual needs. The effect is 622 

similar or enhanced with respect to adjusting the composition of a ternary mobile phase 623 

comprised of water and two organic solvents in RPLC. Anyway, it offers another possibility 624 

for fine-tuning the selectivity and enhancing the chromatographic performance. 625 

The selectivity in submicellar mobile phases may differ significantly from the selectivity 626 

in hydro-organic or micellar mobile phases. The analyst can take advantage of this to improve 627 

the resolution in specific separation problems. HSLC can, therefore, be considered as a 628 

complement to MLC. Excellent separations with a variety of surfactants (such as Brij 30, 629 

THPA, DOSS and Tween 60), compared to conventional RPLC, have been reported for 630 

mixtures containing compounds with various polarities and functionalities. Thus, the presence 631 

of a surfactant in hydro-organic mobile phases has been shown to greatly improve the 632 

separation of alkylbenzenes, polycyclic aromatic hydrocarbons, alkylphenols, and some other 633 

aromatic compounds [11–13]. Compared with separations obtained using hydro-organic 634 

mixtures, shorter retention times and sharper peaks were obtained. In some cases, the 635 

transition from a hybrid micellar to a submicellar system did not change the separation 636 

selectivity, while the analysis time decreased significantly. 637 

Li and Fritz made a comprehensive study, where the HSLC mode was compared with the 638 

hydro-organic mode for several surfactants [10]. Some examples of separation are the 639 

following: 640 

(i) Seven alkylphenols were completely resolved with 60% acetonitrile in ca. 22 min. When 641 

50 mM Pluronic L-31 was added to the mobile phase, baseline resolution was still 642 

possible requiring only 14 min (Fig. 4). 643 

(ii) The separation of six aromatic compounds was also complete with 60% acetonitrile, but 644 

took more than 54 min to elute all analytes from the column, because of the strong 645 
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interactions between the highly hydrophobic analytes and the stationary phase (Fig. 5a). 646 

When 40 mM Tween 60 (which contains one saturated C17 hydrocarbon chain) was 647 

added, the same separation took only about 10 min to finish and yielded much sharper 648 

peaks (Fig. 5b). 649 

(iii) When THPA (which contains four saturated C7 hydrocarbon chains) was added to 60% 650 

acetonitrile, a similar effect was observed, but to a lesser degree due to the weaker 651 

hydrophobic interaction between these compounds and THPA (Fig. 5c). 652 

The selectivity is traditionally measured through the ratio of the retention factors 653 

(i.e. relative retention, called the “selectivity factor”) for selected pairs of probe compounds, 654 

eluted under specific conditions. The probe compounds are assumed to measure different 655 

properties, such as column hydrophobicity, silanol activity, steric hindrance, hydrogen 656 

bonding capacity and ion-exchange capability [59]. However, although the conclusions about 657 

the hydrophobicity generally agree between the tests, those for other properties differ. Also, it 658 

should be noted that the selectivity changes with mobile phase composition. It is, thus, 659 

possible that two chromatographic systems show similar for a given composition region and 660 

differ extremely for another [60]. 661 

As commented, the anionic surfactant SDS adsorbed on the stationary phase increases the 662 

retention and improves the peak shape of basic compounds [14,15]. This extends the 663 

separation space, giving rise to high resolution in wide concentration ranges of both surfactant 664 

and organic solvent. A comprehensive description of the selectivity aimed to compare the 665 

potentiality of MLC and HSLC with SDS, against conventional RPLC, was performed for 666 

mixtures of β-blockers (Fig. 2). In order to compare the selectivity in different conditions, the 667 

retention times of the β-blockers using different organic solvents (methanol, ethanol, 668 

1-propanol and acetonitrile) were regressed each other, at varying mobile phase composition 669 

[15]. The correlation coefficient was used as a descriptor of the similarity between the peak 670 
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distribution (selectivity) of the systems. The addition of surfactant was observed to yield 671 

significant changes in the selectivity. In the hybrid systems, different organic solvents gave 672 

rise to different selectivities, but the similarities increased at increasing concentration of 673 

organic solvent, especially for ethanol and 1-propanol. Methanol and ethanol were similar in 674 

selectivity, in a wide composition range. HSLC with acetonitrile appeared as the most 675 

promising mode, as it allowed full resolution of the β-blockers in practical times, while these 676 

were unresolved or highly retained in the other RPLC modes (Fig. 2) [15]. Ethanol also 677 

provided good separation performance, significantly improved with respect to methanol and 678 

1-propanol. In contrast, the hydro-organic mode with acetonitrile or any of the short-chain 679 

alcohols could not succeed with the separation of the β-blockers, owing to the poorer 680 

selectivity and wider peaks. 681 

Surprisingly, trial-and-error optimization strategies are still often applied in the 682 

optimization of the separation conditions in RPLC, instead of the more reliable interpretive 683 

strategies (based on the description of the retention behaviour of analytes) [61,62]. These 684 

have the advantage of allowing a comprehensive examination of the changes in the 685 

chromatograms of individual solutes, or mixtures of two or more solutes, making the detailed 686 

exploration of the resolution possible, which is especially valuable when two modifiers 687 

should be optimized. The mobile phase offering maximal resolution, or at least satisfactory 688 

resolution in an adequate analysis time, or with a smaller amount of modifier in the mobile 689 

phase is thus facilitated. A software package commercialised in 2000 for MLC can be also 690 

useful for developing HSLC methodologies [63]. 691 

692 
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8. Conclusions 693 

Thirty years ago, people working in RPLC using surfactants as additives (an IPC 694 

approach) avoided concentrations where micelles could be formed. They were only interested 695 

in modifying the stationary phase surface with monomers of surfactant. In 1980, Armstrong 696 

and Henry demonstrated that the presence of micelles in the mobile phase cooperated to 697 

solute elution, with interesting implications in the selectivity [5]. The total production of 698 

scientific reports in MLC up-to-date amounts to several hundreds. Many authors have 699 

demonstrated that the technique has several advantages regarding its large versatility 700 

produced by the interaction of solutes with different surfactants and organic solvents, the 701 

direct injection of physiological fluids which avoids the tedious sample pre-treatment required 702 

in conventional RPLC, the suppression of peak tailing for basic drugs, and the analysis of 703 

samples containing compounds in a wide range of polarities using isocratic elution, among 704 

others [1,8]. MLC requires the addition of an organic solvent to reduce the retention times and 705 

enhance the peak shape. In order to preserve the micelles, analysts working in MLC avoid 706 

high amounts of organic solvent in the mobile phase. Surprisingly, in some reports this 707 

seemed to be ignored, since authors claiming to work in MLC employed mobile phase 708 

compositions where micelles cannot be formed. The results were highly satisfactory, which 709 

demonstrates that there is no reason to neglect the potentiality of mobile phases containing 710 

surfactant monomers instead of micelles. 711 

  There can be some concern about considering that the new conditions give rise to a 712 

particular RPLC mode. The technique could be classified as a particular case of IPC or 713 

submicellar liquid chromatography, without delimiting a clear boundary. A superficial look 714 

would indicate that the only difference with the classical IPC is that the surfactant 715 

concentration is high and the organic solvent content might be larger than conventionally 716 

used. The new submicellar mode can be also considered as a bridge between MLC and 717 
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conventional RPLC: the concentration of surfactant is similar to that used in MLC, but the 718 

high concentration of organic solvent does not allow the formation of micelles.  719 

 Three research groups have investigated this chromatographic mode in the last 15 years, 720 

with regard to MLC and conventional RPLC: Li and Fritz [10,12], Jandera and Fischer [13], 721 

and recently, Ruiz-Ángel et al. [2,14,15,27,52]. These authors demonstrated that the 722 

submicellar RPLC chromatographic mode at high concentration of surfactant, which was 723 

abbreviated as high submicellar liquid chromatography merits some attention, since it offers a 724 

better separation window than conventional hydro-organic mobile phases and superior 725 

separation efficiency compared to MLC, for the analysis of aromatic compounds and basic 726 

drugs. The combination of improved peak shape, larger selectivity, smaller analysis times 727 

(due to the addition of a higher amount of organic solvent), and smaller range in retention 728 

among compounds of extreme polarity, leads to the logical observation that more compounds 729 

can be resolved in one run using isocratic elution. The result is a chromatographic mode, 730 

which achieves in practical times separations of compounds unresolved, or highly retained 731 

with other RPLC modes. 732 

The consumption of organic solvent in HSLC is higher with respect to MLC, which can 733 

be considered as a drawback. However, in the presence of surfactant, the risk of evaporation 734 

decreases due to the solubilisation of the organic solvent molecules by the surfactant. This 735 

facilitates mobile phase recycling. It should be finally said that the addition of surfactants to 736 

the mobile phase complicates the use of mass spectrometric detection, and may add noise or a 737 

background signal to UV detection. 738 
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FIGURE CAPTIONS 924 

Fig. 1. Three-phase systems in alkyl-bonded silica modified with SDS: low submicellar (a), 925 

micellar (b), and high submicellar conditions (c), and in naked silica modified with CTAB: 926 

micellar (d). In (a), (b) and (c), acetonitrile was added. 927 

 928 

Fig. 2. Top: Two-factor space and mobile phase compositions assayed to screen the properties 929 

of the different separation environments, using a C18 Kromasil column. Bottom: 930 

Chromatograms for the marked compositions in the two-factor space. Mobile phase 931 

compositions: (a) 15% acetonitrile, (b) 30% acetonitrile, (c) 10
−3

 M SDS/30% acetonitrile, 932 

(d) 5×10
−3

 M SDS/50% acetonitrile, (e) 0.1125 M SDS/10% acetonitrile, (f) 0.1125 M 933 

SDS/17.5% acetonitrile, (g) 0.1125 M SDS/25% acetonitrile, (h) 0.1125 M SDS/35% 934 

acetonitrile, (i) 0.1125 M SDS/45% acetonitrile. Compounds: (1) atenolol, (2) carteolol, 935 

(3) pindolol, (4) timolol, (5) acebutolol, (6) metoprolol, (7) esmolol, (8) celiprolol, 936 

(9) oxprenolol, and (10) labetalol. Reproduced with permission from Ref. [14]. 937 

 938 

Fig. 3. Retention behavior of pindolol eluted with hydro-organic mobile phases (dotted lines), 939 

and mobile phases containing 0.075 M SDS and organic solvent at increasing concentration 940 

(full lines). Organic solvents: methanol (●), ethanol (♦), 1-propanol (▲), and acetonitrile (■). 941 

Reproduced with permission from Ref. [27]. 942 

943 



 40 

Fig. 4. Chromatographic separation of several alkylphenols on Supelcosil LC-18 (150×4.6 944 

mm I.D.) column. Mobile phase: (a) 60% acetonitrile, and (b) 60% acetonitrile containing 945 

50 mM Pluronic L-31. The flow rate was 1 mL/min, and the peaks were detected at 254 nm. 946 

Compounds: 1 = phenol, 2 = p-cresol, 3 = 4-ethylphenol, 4 = 4-n-propylphenol, 5 = 4-n-947 

butylphenol, 6 = 4-n-amylphenol, and 7 = 4-n-heptylphenol. Reproduced with permission 948 

from Ref. [10]. 949 

 950 

Fig. 5. Chromatographic separation of several aromatic compounds on Supelcosil LC-18 951 

(150×4.6 mm I.D.) column. Mobile phase: (a) 60% acetonitrile, (b) 60% acetonitrile 952 

containing 40 mM Tween 60, and (c) 60% acetonitrile containing 50 mM THPA. The flow 953 

rate was 1 mL/min, and the peaks were detected at 254 nm. Compounds: 1 = benzene, 2 = 954 

naphthalene, 3 = anthracene, 4 = pyrene, 5 = chrysene, and 6 = perylene. Reproduced with 955 

permission from Ref. [10]. 956 


