137 research outputs found

    N-[Morpholino(phen­yl)meth­yl]benzamide

    Get PDF
    The title compound, C18H20N2O2, crystallizes with two mol­ecules in the asymmetric unit. The morpholine rings of both mol­ecules adopt chair conformations. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds. One phenyl ring is disordered over two orientations in a 0.665 (5):0.335 (5) ratio

    Urinary CC16 after challenge with dry air hyperpnoea and mannitol in recreational summer athletes

    Get PDF
    Airway epithelial injury is regarded as a key contributing factor to the pathogenesis of exercise-induced bronchoconstriction (EIB) in athletes. The concentration of the pneumoprotein club cell (Clara cell) CC16 in urine has been found to be a non-invasive marker for hyperpnoea-induced airway epithelial perturbation. Exercise-hyperpnoea induces mechanical, thermal and osmotic stress to the airways. We investigated whether osmotic stress alone causes airway epithelial perturbation in athletes with suspected EIB. Twenty-four recreational summer sports athletes who reported respiratory symptoms on exertion performed a standard eucapnic voluntary hyperpnoea test with dry air and a mannitol test (osmotic challenge) on separate days. Median urinary CC16 increased from 120 to 310 ρg μmol creatinine-1 after dry air hyperpnoea (P = 0.002) and from 90 to 191 ρg μmol creatinine-1 after mannitol (P = 0.021). There was no difference in urinary CC16 concentration between athletes who did or did not bronchoconstrict after dry air hyperpnoea or mannitol. We conclude that, in recreational summer sports athletes with respiratory symptoms, osmotic stress per se to the airway epithelium induces a rise in urinary excretion of CC16. This suggests that hyperosmolarity of the airway surface lining perturbs the airway epithelium in symptomatic athletes.The study was independently supported financially by the World Anti Doping Agency (WADA). Pharmaxis Ltd. provided the mannitol kits free of charge and approved submission of the manuscript for publication

    Factors essential for L,D-transpeptidase-mediated peptidoglycan cross-linking and β-lactam resistance in <em>Escherichia coli</em>

    Get PDF
    International audienceThe target of β-lactam antibiotics is the D,D-transpeptidase activity of penicillin-binding proteins (PBPs) for synthesis of 4→3 cross-links in the peptidoglycan of bacterial cell walls. Unusual 3→3 cross-links formed by L,D-transpeptidases were first detected in Escherichia coli more than four decades ago, however no phenotype has previously been associated with their synthesis. Here we show that production of the L,D-transpeptidase YcbB in combination with elevated synthesis of the (p)ppGpp alarmone by RelA lead to full bypass of the D,D-transpeptidase activity of PBPs and to broad-spectrum β-lactam resistance. Production of YcbB was therefore sufficient to switch the role of (p)ppGpp from antibiotic tolerance to high-level β-lactam resistance. This observation identifies a new mode of peptidoglycan polymerization in E. coli that relies on an unexpectedly small number of enzyme activities comprising the glycosyltransferase activity of class A PBP1b and the D,D-carboxypeptidase activity of DacA in addition to the L,D-transpeptidase activity of YcbB

    Understanding the nature of atmospheric acid processing of mineral dusts in supplying bioavailable phosphorus to the oceans

    Get PDF
    Acidification of airborne dust particles can dramatically increase the amount of bioavailable phosphorus (P) deposited on the surface ocean. Experiments were conducted to simulate atmospheric processes and determine the dissolution behaviour of phosphorus compounds in dust and dust precursors oils. Acid dissolution occurs rapidly (seconds to minutes) and is controlled by the amount of H + ions present. For H + 10-4 mol per gram of dust, the amount of phosphorus (and Ca) released follows a power law dependent on the amount of H + consumed until all inorganic phosphorus minerals are exhausted and the final pH remains acidic. Once dissolved, phosphorus will stay in solution due to slow precipitation kinetics. Dissolution of apatite-P, the major mineral phase in dust (79-96%), occurs whether CaCO 3 is present or not, though the increase in dissolved phosphorus is greater if CaCO 3 is absent or if the particles are externally mixed. The system was modelled adequately as a simple mixture of apatite-P and calcite. Phosphorus dissolves readily by acid processes in the atmosphere in contrast to iron, which dissolves slower and is subject to re-precipitation at cloud water pH. We show that acidification can increase bioavailable phosphorus deposition over large areas of the globe, and may explain much of the previously observed patterns of variability in leachable phosphorus in oceanic areas where primary productivity is limited by this nutrient (e.g. Mediterranean)

    Repelling neoliberal world-making? How the ageing–dementia relation is reassembling the social

    Get PDF
    Growing old ‘badly’ is stigmatizing, a truism that is enrolled into contemporary agendas for the biomedicalization of ageing. Among the many discourses that emphasize ageing as the root cause of later life illnesses, dementia is currently promoted as an epidemic and such hyperbole serves to legitimate its increasing biomedicalization. The new stigma however is no longer contained to simply having dementia, it is failing to prevent it. Anti-ageing cultures of consumption, alongside a proliferation of cultural depictions of the ageing–dementia relation, seem to be refiguring dementia as a future to be worked on to eliminate it from our everyday life. The article unpacks this complexity for how the ageing–dementia relation is being reassembled in biopolitics in ways that enact it as something that can be transformed and managed. Bringing together Bauman’s theories of how cultural communities cope with the otherness of the other with theories of the rationale for the making of monsters – such as the figure of the abject older person with dementia – the article suggests that those older body-persons that personify the ageing–dementia relation, depicted in film and television for example, threaten the modes of ordering underpinning contemporary lives. This is not just because they intimate loss of mind, or because they are disruptive, but because they do not perform what it is to be ‘response-able’ and postpone frailty through managing self and risk

    Genes Involved in Systemic and Arterial Bed Dependent Atherosclerosis - Tampere Vascular Study

    Get PDF
    BACKGROUND: Atherosclerosis is a complex disease with hundreds of genes influencing its progression. In addition, the phenotype of the disease varies significantly depending on the arterial bed. METHODOLOGY/PRINCIPAL FINDINGS: We characterized the genes generally involved in human advanced atherosclerotic (AHA type V-VI) plaques in carotid and femoral arteries as well as aortas from 24 subjects of Tampere Vascular study and compared the results to non-atherosclerotic internal thoracic arteries (n=6) using genome-wide expression array and QRT-PCR. In addition we determined genes that were typical for each arterial plaque studied. To gain a comprehensive insight into the pathologic processes in the plaques we also analyzed pathways and gene sets dysregulated in this disease using gene set enrichment analysis (GSEA). According to the selection criteria used (>3.0 fold change and p-value <0.05), 235 genes were up-regulated and 68 genes down-regulated in the carotid plaques, 242 genes up-regulated and 116 down-regulated in the femoral plaques and 256 genes up-regulated and 49 genes down-regulated in the aortic plaques. Nine genes were found to be specifically induced predominantly in aortic plaques, e.g., lactoferrin, and three genes in femoral plaques, e.g., chondroadherin, whereas no gene was found to be specific for carotid plaques. In pathway analysis, a total of 28 pathways or gene sets were found to be significantly dysregulated in atherosclerotic plaques (false discovery rate [FDR] <0.25). CONCLUSIONS: This study describes comprehensively the gene expression changes that generally prevail in human atherosclerotic plaques. In addition, site specific genes induced only in femoral or aortic plaques were found, reflecting that atherosclerotic process has unique features in different vascular beds
    corecore