78 research outputs found

    Change in the Magnetic Domain Alignment Process at the Onset of a Frustrated Magnetic State in Ferrimagnetic La2Ni(Ni1/3Sb2/3)O6 Double Perovskite

    Get PDF
    We have performed a combined study of magnetization hysteresis loops and time dependence of the magnetization in a broad temperature range for the ferrimagnetic La2Ni(Ni1/3Sb2/3)O6 double perovskite. This material has a ferrimagnetic order transition at ~100 K and at lower temperatures (~ 20 K) shows the signature of a frustrated state due to the presence of two competing magnetic exchange interactions. The temperature dependence of the coercive field shows an important upturn below the point where the frustrated state sets in. The use of the magnetization vs. applied magnetic field hysteresis data, together with the magnetization vs. time data provides a unique opportunity to distinguish between different scenarios for the low temperature regime. From our analysis, a strong domain wall pinning results the best scenario for the low temperature regime. For temperatures larger than 20K the adequate scenario seems to correspond to a weak domain wall pinning.Comment: 4 pages, 5 figures included. Manuscript submitted to IEEE Transactions on Magnetics, proceedings of the LAW3M 2013 conferenc

    Magnetic properties of the double perovskites LaPbMSbO6 (M = Mn, Co and Ni)

    Full text link
    New double perovskites LaPbMSbO6, where M2+ = Mn2+, Co2+, and Ni2+, were synthesized as polycrystals by an aqueous synthetic route at temperatures below 1000 oC. All samples are monoclinic, space group P21/n, as obtained from Rietveld analysis of X-ray powder diffraction patterns. The distribution of M2+ and Sb5+ among the two octahedral sites have 3% of disorder for M2+ = Ni2+, whereas for M2+ = Mn2+ and Co2+ less disorder is found. The three samples have an antiferromagnetic transition, due to the antiferromagnetic coupling between M2+ through super-superexchange paths M2+ - O2- - Sb5+ - O2- - M2+. Transition temperatures are low: 8, 10 and 17 K for Mn2+, Co2+, and Ni2+ respectively, as a consequence of the relatively long distances between the magnetic ions M2+. Besides, for LaPbMnSbO6 a small transition at 45 K was found, with ferrimagnetic characteristics, possibly as a consequence of a small disorder between Mn2+ and Sb5+. This disorder would give additional and shorter interaction paths: superexchange Mn2+ - O2- - Mn2+.Comment: 4 pages, 4 figures included. Manuscript submitted to IEEE Transactions on Magnetics, proceedings of the LAW3M 2013 conferenc

    Tailoring the ground state of the ferrimagnet La2Ni(Ni1/3Sb2/3)O6

    Get PDF
    We report on the magnetic and structural properties of La2Ni(Ni1/3Sb2/3)O6 in polycrystal, single crystal and thin film samples. We found that this material is a ferrimagnet (Tc ~ 100 K) which possesses a very distinctive and uncommon feature in its virgin curve of the hysteresis loops. We observe that bellow 20 K it lies outside the hysteresis cycle, and this feature was found to be an indication of a microscopically irreversible process possibly involving the interplay of competing antiferromagnetic interactions that hinder the initial movement of domain walls. This initial magnetic state is overcome by applying a temperature dependent characteristic field. Above this field, an isothermal magnetic demagnetization of the samples yield a ground state different from the initial thermally demagnetized one.Comment: 21 pages, 8 figures, submitted to JMM

    Perovskite oxides: Oxygen electrocatalysis and bulk structure

    Get PDF
    Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations

    Magnetization reversal in mixed ferrite-chromite perovskites with non magnetic cation on the A-site

    Full text link
    In this work, we have performed Monte Carlo simulations in a classical model for RFe1−x_{1-x}Crx_xO3_3 with R=Y and Lu, comparing the numerical simulations with experiments and mean field calculations. In the analyzed compounds, the antisymmetric exchange or Dzyaloshinskii-Moriya (DM) interaction induced a weak ferromagnetism due to a canting of the antiferromagnetically ordered spins. This model is able to reproduce the magnetization reversal (MR) observed experimentally in a field cooling process for intermediate xx values and the dependence with xx of the critical temperatures. We also analyzed the conditions for the existence of MR in terms of the strength of DM interactions between Fe3+^{3+} and Cr3+^{3+} ions with the x values variations.Comment: 8 pages, 7 figure

    Synthesis and structural, magnetic, electric, and thermoelectric characterization of layered Rh1−xIrxTe2 (0≀x≀1)

    Get PDF
    Crystallographic analysis and thermoelectric studies of solid solutions Rh1−xIrxTe2 (0≀x≀1) are reported. All compositions show layered structures belonging to the PÂŻ3m1 space group at room temperature. IrTe2 presents a first-order phase transition from the hexagonal to the triclinic lattice (PÂŻ1 space group), which is monitored by synchrotron radiation x-ray powder diffraction. In the cooling-down process the transition appears at 240 K while in the warming-up process it begins at 280 K, showing a remarkable hysteresis. All compositions show a strong metallic behavior with enhanced Pauli paramagnetism and two regimes in the electrical resistivity. These regimes are associated with electron-electron scattering (at low temperature ρ∌T2) and electron-phonon coupling (higher temperatures ρ∌T). The Seebeck coefficient shows hole-type carriers for all the compounds

    Phase coexistence of multiple copper oxides on AgCu catalysts during ethylene epoxidation

    Get PDF
    Alloy catalysts under reaction conditions are complex entities. In oxidizing atmospheres, multiple phases can coexist on a catalyst s surface as a result of phase segregation and preferential oxidation. Such a scenario can result in unusual substoichiometric and metastable phases that could play important roles in catalytic processes. For instance, AgCu alloys known to exhibit enhanced epoxide selectivity in partial oxidation of ethylene form an oxide like surface structure under reaction conditions. Under these conditions, copper oxides are stable, while silver oxides are not. Consequently, copper segregates to the alloy s surface and forms an oxide overlayer. Little is known about the structure or function of such overlayers, and it is unknown whether they play an active role in the catalyst s enhanced selectivity. In order to develop a clearer picture of such catalysts, the current work utilizes several in situ spectroscopic and microscopic techniques to examine the copper oxide phases that form when AgCu is exposed to epoxidation conditions. It is found that several forms of oxidic Cu coexist simultaneously on the active catalyst s surface, namely, CuO, Cu2O, and some previously unreported form of oxidized Cu, referred to here as CuxOy. Online product analysis, performed during the in situ spectroscopic measurements, shows that increased epoxide selectivity is correlated with the presence of mixed copper oxidation states and the presence of the CuxOy species. These results support previous theoretical predictions that oxidic copper overlayers on silver play an active role in epoxidation. These results furthermore emphasize the need for in situ spectromicroscopic methods to understand the complexity of alloy catalyst

    Reflectividad infrarroja de SrRuO₃

    Get PDF
    En este trabajo presentamos los espectros de reflectividad infrarroja a temperatura ambiente y a 80K piara la perovskita distorsionada SrRuO₃. Con las relaciones de Krammers-Kronig calculamos las funciones Ăłpticas y reconstruimos el espectro de reflectividad con un modelo basado en la generalizaciĂłn de la relaciĂłn de Lyddane- Sachs-Teller y el modelo de Drude. Con estos datos calculamos el nĂșmero de portadores, la movilidad efectiva y la conductividad Ăłptica, comparando nuestros resultados con los conocidos para diferentes compuestos.Centro de QuĂ­mica InorgĂĄnic

    The role of the copper oxidation state in the electrocatalytic reduction of CO2 into valuable hydrocarbons

    Get PDF
    Redox-active copper catalysts with accurately prepared oxidation states (Cu0, Cu+ and Cu2+) and high selectivity to C2 hydrocarbon formation, from electrocatalytic cathodic reduction of CO2, were fabricated and characterized. The electrochemically prepared copper-redox electro-cathodes yield higher activity for the production of hydrocarbons at lower oxidation state. By combining advanced X-ray spectroscopy and in situ micro-reactors it was possible to unambiguously reveal the variation in the complex electronic structure that the catalysts undergo at different stages (i.e. during fabrication and electrocatalytic reactions). It was found that the surface, sub-surface and bulk properties of the electrochemically prepared catalysts are dominated by the formation of copper carbonates on the surface of cupric-like oxides, which prompts catalyst deactivation by restraining effective charge transport. Furthermore, the formation of reduced or partially-reduced copper catalysts yields the key dissociative proton-consuming reactive adsorption of CO2 to produce CO, allowing the subsequent hydrogenation into C2 and C1 products by dimerization and protonation. These results yield valuable information on the variations in the electronic structure that redox-active copper catalysts undergo in the course of the electrochemical reaction, which, under extreme conditions are mediated by thermodynamics but, critically, kinetics dominate near the oxide/metal phase transitions

    Raman and infrared spectroscopy of Sr2Bâ€ČUO6 (Bâ€Č = Ni; Co) double perovskites

    Get PDF
    Temperature dependent normal modes and lattice thermal expansion of Sr 2Bâ€ČUO6 (Bâ€Č = Ni, Co) double perovskites were investigated by Raman/infrared spectroscopies and synchrotron X-ray diffraction, respectively. Monoclinic crystal structures with space group P21/n were confirmed for both compounds, with no clear structural phase transition between 10 and 400 K. As predicted for this structure, the first-order Raman and infrared spectra show a plethora of active modes. In addition, the Raman spectra reveal an enhancement of the integrated area of an oxygen stretching mode, which is also observed in higher-order Raman modes, and an anomalous softening of ∌1 cm-1 upon cooling below T* ∌ 300 K. In contrast, the infrared spectra show conventional temperature dependence. The band profile phonon anomalies are possibly related to an unspecified electronic property of Sr2Bâ€ČUO6 (Bâ€Č = Ni, Co).Centro de QuĂ­mica InorgĂĄnic
    • 

    corecore