52 research outputs found

    La col·lecció de teixits coptes del Centre de Documentació i Museu Tèxtil de Terrassa

    Get PDF
    Actualment el Centre de Documentació i Museu Tèxtil de Terrassa compta amb una col·lecció de teixits coptes formada per 365 peces i està considerada com una de les més importants del nostre país. Sílvia Carbonell, Cap de l’àrea tècnica del Centre de Documentació i Museu Tèxtil de Terrassa, exposa en el present article el procés històric de la formació d’aquesta col·lecció, així com el treball de restauració dut a terme en els darrers anys i la seva conservació museogràfica. The Centre de Documentació i Museu Tèxtil in Terrassa currently houses a collection of Coptic textiles composed of 365 pieces, and considered to be one of the most important in Catalonia. In the present article, Sílvia Carbonell, head of the technical area of the Centre de Documentació i Museu Tèxtil, describes the historical development of this collection, the restoration projects carried out in recent years, and its museographic reservation

    Teixits artístichs, retrats singulars (I)

    Get PDF

    Pañolerías Helvetia, S.L. = Pañolerías Helvetia, S.L.

    Get PDF

    Immune-inflammatory and hypothalamic-pituitary-adrenal axis biomarkers are altered in patients with non-specific low back pain: A systematic review.

    Get PDF
    This systematic review aimed to investigate immune-inflammatory and hypothalamic-pituitary-adrenal (HPA) axis biomarkers in individuals with non-specific low back pain (NSLBP) compared to healthy control. The search was performed in five databases until 4 November 2021. Two reviewers independently conducted screenings, data extraction, risk of bias, and methodological quality assessment of 14 unique studies. All studies reported the source of the fluid analyzed: nine studies used serum, two used plasma, one used serum and plasma, and two studies used salivary cortisol. We found preliminary and limited evidence (only one study for each biomarker) of increased levels in growth differentiation factor 15 (GDF-15), interleukin-23 (IL-23), transforming growth factor-beta (TGF-β), and soluble tumor necrosis factor receptor 1 (sTNF-R1) in NSLBP. Inconsistent and limited evidence was identified for interleukin-10 (IL-10). Although C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) levels appear to increase in NSLBP, only one study per each biomarker reported statistically significant differences. Interleukin-1 beta (IL-1β), interleukin-17 (IL-17), interferon gamma (IFN-γ), and high-sensitivity CRP (hsCRP) showed no significant differences. Regarding cortisol, one study showed a significant increase and another a significant decrease. More robust evidence between GDF-15, IL-23, TGF-β, and sTNF-R1 with NSLBP is needed. Moreover, contrary to the findings reported in previous studies, when comparing results exclusively with healthy control, insufficient robust evidence for IL-6, TNF-α, and CRP was found in NSLBP. In addition, cortisol response (HPA-related biomarker) showed a dysregulated functioning in NSLBP, with incongruent evidence regarding its directionality. Therefore, our effort is to find adjusted evidence to conclude which immune-inflammatory and HPA axis biomarkers are altered in NSLBP and how much their levels are affected

    Genome-wide chromatin occupancy analysis reveals a role for ASH2 in transcriptional pausing

    Get PDF
    An important mechanism for gene regulation involves chromatin changes via histone modification. One such modification is histone H3 lysine 4 trimethylation (H3K4me3), which requires histone methyltranferase complexes (HMT) containing the trithorax-group (trxG) protein ASH2. Mutations in ash2 cause a variety of pattern formation defects in the Drosophila wing. We have identified genome-wide binding of ASH2 in wing imaginal discs using chromatin immunoprecipitation combined with sequencing (ChIP-Seq). Our results show that genes with functions in development and transcriptional regulation are activated by ASH2 via H3K4 trimethylation in nearby nucleosomes. We have characterized the occupancy of phosphorylated forms of RNA Polymerase II and histone marks associated with activation and repression of transcription. ASH2 occupancy correlates with phosphorylated forms of RNA Polymerase II and histone activating marks in expressed genes. Additionally, RNA Polymerase II phosphorylation on serine 5 and H3K4me3 are reduced in ash2 mutants in comparison to wild-type flies. Finally, we have identified specific motifs associated with ASH2 binding in genes that are differentially expressed in ash2 mutants. Our data suggest that recruitment of the ASH2-containing HMT complexes is context specific and points to a function of ASH2 and H3K4me3 in transcriptional pausing control

    GENCODE: reference annotation for the human and mouse genomes in 2023.

    Get PDF
    GENCODE produces high quality gene and transcript annotation for the human and mouse genomes. All GENCODE annotation is supported by experimental data and serves as a reference for genome biology and clinical genomics. The GENCODE consortium generates targeted experimental data, develops bioinformatic tools and carries out analyses that, along with externally produced data and methods, support the identification and annotation of transcript structures and the determination of their function. Here, we present an update on the annotation of human and mouse genes, including developments in the tools, data, analyses and major collaborations which underpin this progress. For example, we report the creation of a set of non-canonical ORFs identified in GENCODE transcripts, the LRGASP collaboration to assess the use of long transcriptomic data to build transcript models, the progress in collaborations with RefSeq and UniProt to increase convergence in the annotation of human and mouse protein-coding genes, the propagation of GENCODE across the human pan-genome and the development of new tools to support annotation of regulatory features by GENCODE. Our annotation is accessible via Ensembl, the UCSC Genome Browser and https://www.gencodegenes.org
    corecore