40 research outputs found

    Feedback modeling of non-esterified fatty acids in rats after nicotinic acid infusions

    Get PDF
    A feedback model was developed to describe the tolerance and oscillatory rebound seen in non-esterified fatty acid (NEFA) plasma concentrations following intravenous infusions of nicotinic acid (NiAc) to male Sprague-Dawley rats. NiAc was administered as an intravenous infusion over 30 min (0, 1, 5 or 20 Όmol kg−1 of body weight) or over 300 min (0, 5, 10 or 51 Όmol kg−1 of body weight), to healthy rats (n = 63), and serial arterial blood samples were taken for measurement of NiAc and NEFA plasma concentrations. Data were analyzed using nonlinear mixed effects modeling (NONMEM). The disposition of NiAc was described by a two-compartment model with endogenous turnover rate and two parallel capacity-limited elimination processes. The plasma concentration of NiAc was driving NEFA (R) turnover via an inhibitory drug-mechanism function acting on the formation of NEFA. The NEFA turnover was described by a feedback model with a moderator distributed over a series of transit compartments, where the first compartment (M1) inhibited the formation of R and the last compartment (MN) stimulated the loss of R. All processes regulating plasma NEFA concentrations were assumed to be captured by the moderator function. The potency, IC50, of NiAc was 45 nmol L−1, the fractional turnover rate kout was 0.41 L mmol−1 min−1 and the turnover rate of moderator ktol was 0.027 min−1. A lower physiological limit of NEFA was modeled as a NiAc-independent release (kcap) of NEFA into plasma and was estimated to 0.032 mmol L−1 min−1. This model can be used to provide information about factors that determine the time-course of NEFA response following different modes, rates and routes of administration of NiAc. The proposed model may also serve as a preclinical tool for analyzing and simulating drug-induced changes in plasma NEFA concentrations after treatment with NiAc or NiAc analogues

    2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes

    Get PDF

    High Resolution Episcopic Microscopy for Qualitative and Quantitative Data in Phenotyping Altered Embryos and Adult Mice Using the New “Histo3D” System

    No full text
    International audience3D imaging in animal models, during development or in adults, facilitates the identification of structural morphological changes that cannot be achieved with traditional 2D histological staining. Through the reconstruction of whole embryos or a region-of-interest, specific changes are better delimited and can be easily quantified. We focused here on high-resolution episcopic microscopy (HREM), and its potential for visualizing and quantifying the organ systems of normal and genetically altered embryos and adult organisms. Although the technique is based on episcopic images, these are of high resolution and are close to histological quality. The images reflect the tissue structure and densities revealed by histology, albeit in a grayscale color map. HREM technology permits researchers to take advantage of serial 2D aligned stacks of images to perform 3D reconstructions. Three-dimensional visualization allows for an appreciation of topology and morphology that is difficult to achieve with classical histological studies. The nature of the data lends itself to novel forms of computational analysis that permit the accurate quantitation and comparison of individual embryos in a manner that is impossible with histology. Here, we have developed a new HREM prototype consisting of the assembly of a Leica Biosystems Nanocut rotary microtome with optics and a camera. We describe some examples of applications in the prenatal and adult lifestage of the mouse to show the added value of HREM for phenotyping experimental cohorts to compare and quantify structure volumes. At prenatal stages, segmentations and 3D reconstructions allowed the quantification of neural tissue and ventricular system volumes of normal brains at E14.5 and E16.5 stages. 3D representations of normal cranial and peripheric nerves at E15.5 and of the normal urogenital system from stages E11.5 to E14.5 were also performed. We also present a methodology to quantify the volume of the atherosclerotic plaques of ApoEtm1Unc/tm1Unc mutant mice and illustrate a 3D reconstruction of knee ligaments in adult mice
    corecore