199 research outputs found

    The Endoplasmic Reticulum Glucosyltransferase Recognizes Nearly Native Glycoprotein Folding Intermediates

    Get PDF
    The UDP-Glc:glycoprotein glucosyltransferase (GT), a key player in the endoplasmic reticulum (ER) quality control of glycoprotein folding, only glucosylates glycoproteins displaying non-native conformations. To determine whether GT recognizes folding intermediates or irreparably misfolded species with nearly native structures, we generated and tested as GT substrates neoglycoprotein fragments derived from chymotrypsin inhibitor 2 (GCI2) bearing from 53 to 64 (full-length) amino acids. Fragment conformations mimicked the last stage-folding structures adopted by a glycoprotein entering the ER lumen. GT catalytic efficiency (V(max)/K(m)) remained constant from GCI2-(1-53) to GCI2-(1-58) and then steadily declined to reach a minimal value with GCI2-(1-64). The same parameter showed a direct hyperbolic relationship with solvent accessibility of the single Trp residue but only in fragments exposing hydrophobic amino acid patches. Mutations introduced (GCI2-(1-63)V63S and GCI2-(1-64)V63S) produced slight structural destabilizations but increased GT catalytic efficiency. This parameter presented an inverse exponential relationship with the free energy of unfolding of canonical and mutant fragments. Moreover, the catalytic efficiency showed a linear relationship with the fraction of unfolded species in water. It was concluded that the GT-derived quality control may be operative with nearly native conformers and that no alternative ER-retaining mechanisms are required when glycoproteins approach their proper folding.Fil: Caramelo, Julio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Castro, Olga Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: de Prat Gay, Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Parodi, Armando José A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin

    A sweet code for glycoprotein folding

    Get PDF
    Glycoprotein synthesis is initiated in the endoplasmic reticulum (ER) lumen upon transfer of a glycan (Glc3Man9GlcNAc2) from a lipid derivative to Asn residues (N-glycosylation). N-Glycan-dependent quality control of glycoprotein folding in the ER prevents exit to Golgi of folding intermediates, irreparably misfolded glycoproteins and incompletely assembled multimeric complexes. It also enhances folding efficiency by preventing aggregation and facilitating formation of proper disulfide bonds. The control mechanism essentially involves four components, resident lectin-chaperones (calnexin and calreticulin) that recognize monoglucosylated polymannose protein-linked glycans, lectin-associated oxidoreductase acting on monoglucosylated glycoproteins (ERp57), a glucosyltransferase that creates monoglucosylated epitopes in protein-linked glycans (UGGT) and a glucosidase (GII) that removes the glucose units added by UGGT. This last enzyme is the only mechanism component sensing glycoprotein conformations as it creates monoglucosylated glycans exclusively in not properly folded glycoproteins or in not completely assembled multimeric glycoprotein complexes. Glycoproteins that fail to properly fold are eventually driven to proteasomal degradation in the cytosol following the ER-associated degradation pathway, in which the extent of N-glycan demannosylation by ER mannosidases play a relevant role in the identification of irreparably misfolded glycoproteins.Fil: Caramelo, Julio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Parodi, Armando José A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin

    Desenvolvimento do feijoeiro sob o uso de biofertilizante e adubação mineral.

    Get PDF
    A produção intensiva de alimentos exige manejo adequado do solo para garantir a produtividade e a sustentabilidade ambiental. Uma das alternativas é a utilização de resíduos orgânicos no desenvolvimento das culturas, diminuindo a dependência de adubos minerais. Com o objetivo de avaliar o desenvolvimento da cultura de feijão (Phaseolus vulgaris L.), utilizando biofertilizante e adubação mineral, conduziu-se o experimento com seis tratamentos dispostos ao acaso, em esquema fatorial, em quatro blocos, com parcelas de 8,0 x 5,0 m. Os tratamentos sob solo cultivado com a cultura de feijão caracterizaram-se como: com e sem biofertilizante (CB e SB, respectivamente) e para a adubação mineral foram utilizadas a dose recomendada no plantio, ½ dose de adubação e sem adubação mineral (AM, 1/2AM, SAM). Adotaram-se práticas culturais convencionais para o preparo inicial do solo, e em seguida foi efetuada a aplicação de biofertilizante de origem bovina na dosagem de 100 m3 ha-1, com antecedência de três meses da semeadura. Foram avaliados os parâmetros massa da matéria seca acumulada na parte aérea da planta, área foliar e produtividade da cultura. Os resultados mostraram semelhanças entre as características analisadas, obtendo-se melhor desenvolvimento à cultura que recebeu biofertilizante

    Digital pathology workflow implementation at ipatimup

    Get PDF
    The advantages of the digital methodology are well known. In this paper, we provide a detailed description of the process for the digital transformation of the pathology laboratory at IPATIMUP, the major modifications that operate throughout the processing pipeline, and the advantages of its implementation. The model of digital workflow implementation at IPATIMUP demonstrates that careful planning and adoption of simple measures related to time, space, and sample management can be adopted by any pathology laboratory to achieve higher quality and easy digital transformation

    Characterization of a spirit beverage produced with strawberry tree (Arbutus unedo L.) fruit and aged with oak wood at laboratorial scale

    Get PDF
    Arbutus unedo spirit is a valuable product in Mediterranean countries. This spirit is usually marketed in Portugal without wood ageing. This work aims to characterize the ageing effect on the Arbutus unedo spirit, for three and six months with oak wood (Quercus robur L.) submitted to different toasting levels, based on its chemical composition and its sensory properties. For this purpose, several parameters were analysed: acidity, pH, dry extract, and volatile compounds (methanol, acetaldehyde, ethyl acetate and fusel alcohols). The volatile compounds were identified by GC-MS and quantified by GC-FID. Sensory analysis was performed by a trained panel, who have profiled this beverage, as well as the changes acquired during ageing. Spectroscopic techniques, namely FTIR–ATR, were applied to discriminate the different beverages produced. The results highlighted an increase in Arbutus unedo spirit’s quality with the wood contact, mainly based on the sensory attributes. Additionally, they showed that the best beverages were produced using oak wood with medium toasting levels during three months of ageinginfo:eu-repo/semantics/publishedVersio

    Endoplasmic Reticulum Calcium Regulates the Retrotranslocation of Trypanosoma Cruzi Calreticulin to the Cytosol

    Get PDF
    For most secretory pathway proteins, crossing the endoplasmic reticulum (ER) membrane is an irreversible process. However, in some cases this flow can be reversed. For instance, misfolded proteins retained in the ER are retrotranslocated to the cytosol to be degraded by the proteasome. This mechanism, known as ER associated degradation (ERAD), is exploited by several bacterial toxins to gain access to the cytosol. Interestingly, some ER resident proteins can also be detected in the cytosol or nucleus, calreticulin (CRT) being the most studied. Here we show that in Trypanosoma cruzi a minor fraction of CRT localized to the cytosol. ER calcium depletion, but not increasing cytosolic calcium, triggered the retrotranslocation of CRT in a relatively short period of time. Cytosolic CRT was subsequently degraded by the proteasome. Interestingly, the single disulfide bridge of CRT is reduced when the protein is located in the cytosol. The effect exerted by ER calcium was strictly dependent on the C-terminal domain (CRT-C), since a CRT lacking it was totally retained in the ER, whereas the localization of an unrelated protein fused to CRT-C mirrored that of endogenous CRT. This finding expands the regulatory mechanisms of protein sorting and may represent a new crossroad between diverse physiological processes

    A peripheral blood mononuclear cell-based in vitro model: A tool to explore indoleamine 2, 3-dioxygenase-1 (IDO1)

    Get PDF
    Background: Proinflammatory cytokines powerfully induce the rate-limiting enzyme indoleamine 2, 3-dioxygenase-1 (IDO-1) in dendritic cells (DCs) and monocytes, it converts tryptophan (Trp) into L-kynurenine (KYN), along the kynurenine pathway (KP). This mechanism represents a crucial innate immunity regulator that can modulate T cells. This work explores the role of IDO1 in lymphocyte proliferation within a specific proinflammatory milieu. Methods: Peripheral blood mononuclera cells (PBMCs) were isolated from buffy coats taken from healthy blood donors and exposed to a pro-inflammatory milieu triggered by a double-hit stimulus: lipopolysaccharide (LPS) plus anti-CD3/CD28. The IDO1 mRNA levels in the PBMCs were measured by RT-PCR; the IDO1 activity was analyzed using the KYN/Trp ratio, measured by HPLC-EC; and lymphocyte proliferation was measured by flow cytometry. Trp and epacadostat (EP) were used as an IDO1 substrate and inhibitor, respectively. KYN, which is known to modulate Teffs, was tested as a positive control in lymphocyte proliferation. Results: IDO1 expression and activity in PBMCs increased in an in vitro pro-inflammatory milieu. The lymphoid stimulus increased IDO1 expression and activity, which supports the interaction between the activated lymphocytes and the circulating myeloid IDO1-expressing cells. The addition of Trp decreased lymphocyte proliferation but EP, which abrogated the IDO1 function, had no impact on proliferation. Additionally, incubation with KYN seemed to decrease the lymphocyte proliferation. Conclusion: IDO1 inhibition did not change T lymphocyte proliferation. We present herein an in vitro experimental model suitable to measure IDO1 expression and activity in circulating myeloid cells

    Cofilin-1 is a mechanosensitive regulator of transcription

    Get PDF
    The mechanical properties of the extracellular environment are interrogated by cells and integrated through mechanotransduction. Many cellular processes depend on actomyosin-dependent contractility, which is influenced by the microenvironment's stiffness. Here, we explored the influence of substrate stiffness on the proteome of proliferating undifferentiated human umbilical cord-matrix mesenchymal stem/stromal cells. The relative abundance of several proteins changed significantly by expanding cells on soft (∼3 kPa) or stiff substrates (GPa). Many such proteins are associated with the regulation of the actin cytoskeleton, a major player of mechanotransduction and cell physiology in response to mechanical cues. Specifically, Cofilin-1 levels were elevated in cells cultured on soft comparing with stiff substrates. Furthermore, Cofilin-1 was de-phosphorylated (active) and present in the nuclei of cells kept on soft substrates, in contrast with phosphorylated (inactive) and widespread distribution in cells on stiff. Soft substrates promoted Cofilin-1-dependent increased RNA transcription and faster RNA polymerase II-mediated transcription elongation. Cofilin-1 is part of a novel mechanism linking mechanotransduction and transcription.publishe
    • …
    corecore