67 research outputs found

    Evaluation of a novel mitochondrial Pan-Mucorales marker for the detection, identification, quantification, and growth stage determination of mucormycetes

    Get PDF
    Mucormycosis infections are infrequent yet aggressive and serious fungal infections. Early diagnosis of mucormycosis and its discrimination from other fungal infections is required for targeted treatment and more favorable patient outcomes. The majority of the molecular assays use 18 S rDNA. In the current study, we aimed to explore the potential of the mitochondrial rnl (encoding for large-subunit-ribosomal-RNA) gene as a novel molecular marker suitable for research and diagnostics. Rnl was evaluated as a marker for: (1) the Mucorales family, (2) species identification (Rhizopus arrhizus, R. microsporus, Mucor circinelloides, and Lichtheimia species complexes), (3) growth stage, and (4) quantification. Sensitivity, specificity, discriminatory power, the limit of detection (LoD), and cross-reactivity were evaluated. Assays were tested using pure cultures, spiked clinical samples, murine organs, and human paraffin-embedded-tissue (FFPE) samples. Mitochondrial markers were found to be superior to nuclear markers for degraded samples. Rnl outperformed the UMD universal® (Molyzm) marker in FFPE (71.5% positive samples versus 50%). Spiked blood samples highlighted the potential of rnl as a pan-Mucorales screening test. Fungal burden was reproducibly quantified in murine organs using standard curves. Identification of pure cultures gave a perfect (100%) correlation with the detected internal transcribed spacer (ITS) sequence. In conclusion, mitochondrial genes, such as rnl, provide an alternative to the nuclear 18 S rDNA genes and deserve further evaluation.CD laboratory: This research was funded by the Christian Doppler Laboratory for fungal infections

    Human naïve regulatory T-cells feature high steady-state turnover and are maintained by IL-7

    Get PDF
    Naïve FoxP3-expressing regulatory T-cells (Tregs) are essential to control immune responses via continuous replenishment of the activated-Treg pool with thymus-committed suppressor cells. The mechanisms underlying naïve-Treg maintenance throughout life in face of the age-associated thymic involution remain unclear. We found that in adults thymectomized early in infancy the naïve-Treg pool is remarkably well preserved, in contrast to conventional naïve CD4 T-cells. Naïve-Tregs featured high levels of cycling and pro-survival markers, even in healthy individuals, and contrasted with other circulating naïve/memory CD4 T-cell subsets in terms of their strong γc-cytokine-dependent signaling, particularly in response to IL-7. Accordingly, ex-vivo stimulation of naïve-Tregs with IL-7 induced robust cytokine-dependent signaling, Bcl-2 expression, and phosphatidylinositol 3-kinase (PI3K)-dependent proliferation, whilst preserving naïve phenotype and suppressive capacity. Altogether, our data strongly implicate IL-7 in the thymus-independent long-term survival of functional naïve-Tregs, and highlight the potential of targeting the IL-7 pathway to modulate Tregs in different clinical settings.This work was supported by Fundação para a Ciência e Tecnologia (FCT; POCI2010/IC/83068/2007 to RMMV; PTDC/SAU-MIC/109786/2009 to AES), and Gulbenkian Foundation (96526/2009 to JF; P132532/2013 to AES). SLS, ASA, RBF, ARP, PM and SMF received FCT scholarships

    Candida albicans Factor H Binding Molecule Hgt1p – A Low Glucose-Induced Transmembrane Protein Is Trafficked to the Cell Wall and Impairs Phagocytosis and Killing by Human Neutrophils

    Get PDF
    Complement is a tightly controlled arm of the innate immune system, facilitating phagocytosis and killing of invading pathogens. Factor H (FH) is the main fluid-phase inhibitor of the alternative pathway. Many pathogens can hijack FH from the host and protect themselves from complement-dependent killing. Candida albicans is a clinically important opportunistic yeast, expressing different FH binding molecules on its cell surface, which allow complement evasion. One such FH binding molecule is the transmembrane protein “High affinity glucose transporter 1” (Hgt1p), involved in glucose metabolism. This study demonstrated that Hgt1p transcription and expression is induced and highest at the low, but physiological glucose concentration of 0.1%. Thus, this concentration was used throughout the study. We also demonstrated the transport of Hgt1p to the fungal cell wall surface by vesicle trafficking and its release by exosomes containing Hgt1p integrated in the vesicular membrane. We corroborated Hgt1p as FH binding molecule. A polyclonal anti-Hgt1p antibody was created which interfered with the binding of FH, present in normal human serum to the fungal cell wall. A chimeric molecule consisting of FH domains 6 and 7 fused to human IgG1 Fc (FH6.7/Fc) even more comprehensively blocked FH binding, likely because FH6.7/Fc diverted FH away from fungal FH ligands other than Hgt1p. Reduced FH binding to the yeast was associated with a concomitant increase in C3b/iC3b deposition and resulted in significantly increased in vitro phagocytosis and killing by human neutrophils. In conclusion, Hgt1p also exhibits non-canonical functions such as binding FH after its export to the cell wall. Blocking Hgt1p-FH interactions may represent a tool to enhance complement activation on the fungal surface to promote phagocytosis and killing of C. albicans

    Effects of Intracellular Calcium and Actin Cytoskeleton on TCR Mobility Measured by Fluorescence Recovery

    Get PDF
    Background: The activation of T lymphocytes by specific antigen is accompanied by the formation of a specialized signaling region termed the immunological synapse, characterized by the clustering and segregation of surface molecules and, in particular, by T cell receptor (TCR) clustering. Methodology/Principal Findings: To better understand TCR motion during cellular activation, we used confocal microscopy and photo-bleaching recovery techniques to investigate the lateral mobility of TCR on the surface of human T lymphocytes under various pharmacological treatments. Using drugs that cause an increase in intracellular calcium, we observed a decrease in TCR mobility that was dependent on a functional actin cytoskeleton. In parallel experiments measurement of filamentous actin by FACS analysis showed that raising intracellular calcium also causes increased polymerization of the actin cytoskeleton. These in vitro results were analyzed using a mathematical model that revealed effective binding parameters between TCR and the actin cytoskeleton. Conclusion/Significance: We propose, based on our results, that increase in intracellular calcium levels leads to actin polymerization and increases TCR/cytoskeleton interactions that reduce the overall mobility of the TCR. In a physiological setting, this may contribute to TCR re-positioning at the immunological synapse

    Induction of IgG3 to LPS via Toll-Like Receptor 4 Co-Stimulation

    Get PDF
    B-cells integrate antigen-specific signals transduced via the B-cell receptor (BCR) and antigen non-specific co-stimulatory signals provided by cytokines and CD40 ligation in order to produce IgG antibodies. Toll-like receptors (TLRs) also provide co-stimulation, but the requirement for TLRs to generate T-cell independent and T-cell dependent antigen specific antibody responses is debated. Little is known about the role of B-cell expressed TLRs in inducing antigen-specific antibodies to antigens that also activate TLR signaling. We found that mice lacking functional TLR4 or its adaptor molecule MyD88 harbored significantly less IgG3 natural antibodies to LPS, and required higher amounts of LPS to induce anti-LPS IgG3. In vitro, BCR and TLR4 signaling synergized, lowering the threshold for production of T-cell independent IgG3 and IL-10. Moreover, BCR and TLR4 directly associate through the transmembrane domain of TLR4. Thus, in vivo, BCR/TLR synergism could facilitate the induction of IgG3 antibodies against microbial antigens that engage both innate and adaptive B-cell receptors. Vaccines might exploit BCR/TLR synergism to rapidly induce antigen-specific antibodies before significant T-cell responses arise

    A case of mistaken identity: HSPs are no DAMPs but DAMPERs

    Get PDF
    Until recently, the immune system was seen solely as a defense system with its primary task being the elimination of unwanted microbial invaders. Currently, however, the functional significance of the immune system has obtained a much wider perspective, to include among others the maintenance and restoration of homeostasis following tissue damage. In this latter aspect, there is a growing interest in the identification of molecules involved, such as the so-called danger or damage-associated molecular patterns (DAMPs), also called alarmins. Since heat shock proteins are archetypical molecules produced under stressful conditions, such as tissue damage or inflammation, they are frequently mentioned as prime examples of DAMPs (Bianchi, J Leukoc Biol 81:1–5, 2007; Kono and Rock, Nat Rev Immunol 8:279–289, 2008; Martin-Murphy et al., Toxicol Lett 192:387–394, 2010). See for instance also a recent review (Chen and Nunez, Science 298:1395–1401, 2010). Contrary to this description, we recently presented some of the arguments against a role of heat shock protein as DAMPs (Broere et al., Nat Rev Immunol 11:565-c1, 2011). With this perspective and reflection article, we hope to elaborate on this debate and provide additional thoughts to further ignite this discussion on this critical and evolving issue

    Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis

    Get PDF
    Toll-like receptors (TLRs) are a family of transmembrane pattern recognition receptors (PRR) that play a key role in innate and adaptive immunity by recognizing structural components unique to bacteria, fungi and viruses. TLR4 is the most studied of the TLRs, and its primary exogenous ligand is lipopolysaccharide, a component of Gram-negative bacterial walls. In the absence of exogenous microbes, endogenous ligands including damage-associated molecular pattern molecules from damaged matrix and injured cells can also activate TLR4 signaling. In humans, single nucleotide polymorphisms of the TLR4 gene have an effect on its signal transduction and on associated risks of specific diseases, including cirrhosis. In liver, TLR4 is expressed by all parenchymal and non-parenchymal cell types, and contributes to tissue damage caused by a variety of etiologies. Intact TLR4 signaling was identified in hepatic stellate cells (HSCs), the major fibrogenic cell type in injured liver, and mediates key responses including an inflammatory phenotype, fibrogenesis and anti-apoptotic properties. Further clarification of the function and endogenous ligands of TLR4 signaling in HSCs and other liver cells could uncover novel mechanisms of fibrogenesis and facilitate the development of therapeutic strategies

    Azole resistance in mucromycetes and de novo sequencing of cyp51 homologous genes

    No full text

    Human regulatory T-cell development is dictated by Interleukin-2 and -15 expressed in a non-overlapping pattern in the thymus

    No full text
    © 2014 Elsevier Ltd. All rights reserved.Thymus-derived FOXP3-expressing regulatory T-cells (tTregs) are master orchestrators of physiological and pathological immune responses, thus constituting ideal targets for the treatment of autoimmunity. Despite their clinical importance, the developmental program governing their differentiation in the human thymus remains poorly understood. Here, we investigated the role of common gamma-chain cytokines in human tTreg differentiation, by performing gain- and loss-of-function experiments in 3D and 2D postnatal thymic cultures. We identified IL-2 and IL-15 as key molecular determinants in this process and excluded a major function for IL-4, IL-7 and IL-21. Mechanistically, IL-2 and IL-15 were equally able to drive tTreg precursor differentiation into FOXP3(+) cells, and promote tTreg proliferation and survival. Both cytokines also increased the expression levels of molecules associated with effector function within FOXP3(+) subsets, supporting their involvement in tTreg functional maturation. Furthermore, we revealed that IL-2 and IL-15 are expressed in a non-overlapping pattern in the human thymus, with the former produced mainly by mature αβ and γδ thymocytes and the latter by monocyte/macrophages and B lymphocytes. Our results identify core mechanisms dictating human tTreg development, with IL-2 and IL-15 defining specific niches required for tTreg lineage stabilization and differentiation, with implications for their therapeutic targeting in autoimmune conditions.This work was supported by Fundação para a Ciência e a Tecnologia, under Grant PTDC/SAU-IMU/113541/2009 (to IC)
    corecore