14 research outputs found

    UV irradiation induces a postreplication DNA damage checkpoint

    No full text
    Eukaryotic cells irradiated with high doses of UV exhibit cell-cycle responses referred to as G(1)/S, intraS, and G(2)/M checkpoints. After a moderate UV dose that approximates sunlight exposure and is lethal to fission yeast checkpoint mutants, we found unexpectedly that these cell-cycle responses do not occur. Instead, cells at all stages of the cell cycle carry lesions into S phase and delay cell-cycle progression for hours after the completion of bulk DNA synthesis. Both DNA replication and the checkpoint kinase, Chk1, are required to generate this cell-cycle response. UV-irradiation of Δchk1 cells causes chromosome damage and loss of viability only after cells have replicated irradiated DNA and entered mitosis. These data suggest that an important physiological role of the cell-cycle response to UV is to provide time for postreplication repair

    A continental phenology model for monitoring vegetation responses to interannual climatic variability

    No full text
    Regional phenology is important in ecosystem simulation models and coupled biosphere/atmosphere models. In the continental United States, the timing of the onset of greenness in the spring (leaf expansion, grass green-up) and offset of greenness in the fall (leaf abscission, cessation of height growth, grass brown-oft) are strongly influenced by meteorological and climatological conditions. We developed predictive phenology models based on traditional phenology research using commonly available meteorological and climatological data. Predictions were compared with satellite phenology observations at numerous 20 km x 20 km contiguous landcover sites. Onset mean absolute error was 7.2 days in the deciduous broadleaf forest (DBF) biome and 6.1 days in the grassland biome. Offset mean absolute error was 5.3 days in the DBF biome and 6.3 days in the grassland biome. Maximum expected errors at a 95 % probability level ranged from 10 to 14 days. Onset was strongly associated with temperature summations in both grassland and DBF biomes; DBF offset was best predicted with a photoperiod function, while grassland offset required a combination of precipitation and temperature controls. A long-term regional test of the DBF onset model captured field-measured interannual variability trends in lila

    Demographic history and rare allele sharing among human populations

    No full text
    High-throughput sequencing technology enables population-level surveys of human genomic variation. Here, we examine the joint allele frequency distributions across continental human populations and present an approach for combining complementary aspects of whole-genome, low-coverage data and targeted high-coverage data. We apply this approach to data generated by the pilot phase of the Thousand Genomes Project, including whole-genome 2–4× coverage data for 179 samples from HapMap European, Asian, and African panels as well as high-coverage target sequencing of the exons of 800 genes from 697 individuals in seven populations. We use the site frequency spectra obtained from these data to infer demographic parameters for an Out-of-Africa model for populations of African, European, and Asian descent and to predict, by a jackknife-based approach, the amount of genetic diversity that will be discovered as sample sizes are increased. We predict that the number of discovered nonsynonymous coding variants will reach 100,000 in each population after ∼1,000 sequenced chromosomes per population, whereas ∼2,500 chromosomes will be needed for the same number of synonymous variants. Beyond this point, the number of segregating sites in the European and Asian panel populations is expected to overcome that of the African panel because of faster recent population growth. Overall, we find that the majority of human genomic variable sites are rare and exhibit little sharing among diverged populations. Our results emphasize that replication of disease association for specific rare genetic variants across diverged populations must overcome both reduced statistical power because of rarity and higher population divergence

    Roles and Regulation of Leptin in Reproduction

    No full text
    corecore