1,287 research outputs found

    Measuring the low mass end of the Mbh - sigma relation

    Full text link
    We show that high quality laser guide star (LGS) adaptive optics (AO) observations of nearby early-type galaxies are possible when the tip-tilt correction is done by guiding on nuclei while the focus compensation due to the changing distance to the sodium layer is made 'open loop'. We achieve corrections such that 40% of flux comes from R<0.2 arcsec. To measure a black hole mass (Mbh) one needs integral field observations of both high spatial resolution and large field of view. With these data it is possible to determine the lower limit to Mbh even if the spatial resolution of the observations are up to a few times larger than the sphere of influence of the black hole.Comment: 4 pages, 2 figures, LaTeX. To appear in "Hunting for the Dark: The Hidden Side of Galaxy Formation", Malta, 19-23 Oct. 2009, eds. V.P. Debattista and C.C. Popescu, AIP Conf. Ser., in pres

    Do Job Security Guarantees Work?

    Get PDF
    We investigate the effect of employer job security guarantees on employee perceptions of job security. Using linked employer-employee data from the 1998 British Workplace Employee Relations Survey, we find job security guarantees reduce employee perceptions of job insecurity. This finding is robust to endogenous selection of job security guarantees by employers engaging in organisational change and workforce reductions. Furthermore, there is no evidence that increased job security through job guarantees results in greater work intensification, stress, or lower job satisfaction

    Labour market transitions among the over-50s

    Get PDF

    Monster black holes

    Full text link
    A combination of ground-based and spacecraft observations has uncovered two black holes of 10 billion solar masses in the nearby Universe. The finding sheds light on how these cosmic monsters co-evolve with galaxies.Comment: 2 pages, 1 figure, LaTeX. Published in Nature "News & Views

    The Mass Assembly History of Spheroidal Galaxies: Did Newly-Formed Systems Arise Via Major Mergers?

    Get PDF
    We examine the properties of a morphologically-selected sample of 0.4<z<1.0 spheroidal galaxies in the GOODS fields in order to ascertain whether their increase in abundance with time arises primarily from mergers. To address this question we determine scaling relations between the dynamical mass determined from stellar velocity dispersions, and the stellar mass determined from optical and infrared photometry. We exploit these relations across the larger sample for which we have stellar masses in order to construct the first statistically robust estimate of the evolving dynamical mass function over 0<z<1. The trends observed match those seen in the stellar mass functions of Bundy et al. 2005 regarding the top-down growth in the abundance of spheroidal galaxies. By referencing our dynamical masses to the halo virial mass we compare the growth rate in the abundance of spheroidals to that predicted by the assembly of dark matter halos. Our comparisons demonstrate that major mergers do not fully account for the appearance of new spheroidals since z~1 and that additional mechanisms, such as morphological transformations, are required to drive the observed evolution.Comment: Accepted to ApJL; New version corrects the Millennium merger predictions--further details at http://www.astro.utoronto.ca/~bundy/millennium

    Fast and slow rotators in the densest environments: a FLAMES/GIRAFFE IFS study of galaxies in Abell 1689 at z=0.183

    Get PDF
    We present FLAMES/GIRAFFE integral field spectroscopy of 30 galaxies in the massive cluster Abell 1689 at z = 0.183. Conducting an analysis similar to that of ATLAS3D, we extend the baseline of the kinematic morphology-density relation by an order of magnitude in projected density and show that it is possible to use existing instruments to identify slow and fast rotators beyond the local Universe. We find 4.5 +- 1.0 slow rotators with a distribution in magnitude similar to those in the Virgo cluster. The overall slow rotator fraction of our Abell 1689 sample is 0.15 +- 0.03, the same as in Virgo using our selection criteria. This suggests that the fraction of slow rotators in a cluster is not strongly dependent on its density. However, within Abell 1689, we find that the fraction of slow rotators increases towards the centre, as was also found in the Virgo cluster.Comment: Accepted by MNRA

    An Oxford SWIFT Integral Field Spectroscopy study of 14 early-type galaxies in the Coma cluster

    Full text link
    As a demonstration of the capabilities of the new Oxford SWIFT integral field spectrograph, we present first observations for a set of 14 early-type galaxies in the core of the Coma cluster. Our data consist of I- and z-band spatially resolved spectroscopy obtained with the Oxford SWIFT spectrograph, combined with r-band photometry from the SDSS archive for 14 early- type galaxies. We derive spatially resolved kinematics for all objects from observations of the calcium triplet absorption features at \sim 8500 {AA} . Using this kinematic information we classify galaxies as either Fast Rotators or Slow Rotators. We compare the fraction of fast and slow rotators in our sample, representing the densest environment in the nearby Universe, to results from the ATLAS3D survey, finding the slow rotator fraction is \sim 50 per cent larger in the core of the Coma cluster than in the Virgo cluster or field, a 1.2 {\sigma} increase given our selection criteria. Comparing our sample to the Virgo cluster core only (which is 24 times less dense than the Coma core) we find no evidence of an increase in the slow rotator fraction. Combining measurements of the effective velocity dispersion {\sigma_e} with the photometric data we determine the Fundamental Plane for our sample of galaxies. We find the use of the average velocity dispersion within 1 effective radius, {\sigma_e}, reduces the residuals by 13 per cent with respect to comparable studies using central velocity dispersions, consistent with other recent integral field Fundamental Plane determinations.Comment: 7 pages, 4 figures, in pres

    Listeria monocytogenes survey in cubed cooked ham packaged in modified atmosphere and bioprotective effect of selected lactic acid bacteria

    Get PDF
    The aim of this work was to study the presence of Listeria monocytogenes, as well as the potential activity of two bioprotective cultures (Lyocarni BOX-74 and Lyocarni BOX-57), versus a mix of three L. monocytogenes strains that were intentionally inoculated in cooked cubed ham, packaged in Modified Atmosphere Packaging and stored at different temperatures. The bioprotective cultures limit L. monocytogenes growth in cubed cooked ham stored either at 4\u25e6 C for 60 days and at 4\u25e6 C for 20 days and at 8\u25e6 C for 40 days. The inhibition at 8\u25e6 C is particularly useful for industrial cooked meat products, considering there are often thermal abuse conditions (8\u25e6 C) in the supermarkets. Both the starters can eliminate L. monocytogenes risk and maintain the products safe, despite the thermal abuse conditions. In addition, both culture starters grew without producing perceptible sensory variations in the samples, as demonstrated by the panel of the untrained tasters. The bioprotective LAB produced neither off-odours and off-flavours, nor white/viscous patinas, slime, discoloration or browning. Therefore, according to the obtained data, and despite the fact that cooked cubed ham did not show pH 64 4.4 or aw 64 0.92, or pH 64 5.0 and aw 64 0.94, as cited in the EC Regulation 2073/2005. It can be scientifically stated that cubes of cooked ham with the addition of bioprotective starters cultures do not constitute a favourable substrate for L. monocytogenes growth. Consequently, these products can easily fall into category 1.3 (ready-to-eat foods that are not favourable to L. monocytogenes growth, other than those for infants and for special medical purposes), in which a maximum concentration of L. monocytogenes of 100 CFU g 121 is allowed

    Determination of masses of the central black holes in NGC524 and NGC2549 using Laser Guide Star Adaptive Optics

    Full text link
    [abridged] We present observations of NGC524 and NGC2549 with LGS AO obtained at GEMINI North telescope using the NIFS IFU in the K band. The purpose of these observations, together with previously obtained observations with the SAURON IFU, is to determine the masses (Mbh) of the supermassive black holes (SMBH). The targeted galaxies were chosen to have central light profiles showing a core (NGC524) and a cusp (NGC2549), to probe the feasibility of using the galaxy centre as the NGS required for LGS AO. We employ an innovative `open loop' technique. The data have spatial resolution of 0.23" and 0.17" FWHM, showing that high quality LGS AO observations of these objects are possible. We construct axisymmetric three-integral dynamical models which are constrained with both the NIFS and SAURON data. The best fitting models yield Mbh=(8.3 +2.7 -1.3) x 10^8 Msun for NGC524 and Mbh=(1.4 +0.2 -1.3) x 10^7 Msun for NGC2549 (all errors are at the 3 sigma CL). We demonstrate that the wide-field SAURON data play a crucial role in the M/L determination increasing the accuracy of M/L by a factor of at least 5, and constraining the upper limits on Mbh. The NIFS data are crucial in constraining the lower limits of Mbh and in combination with the large scale data reducing the uncertainty by a factor of 2 or more. We find that the orbital structure of NGC524 shows significant tangential anisotropy, while at larger radii both galaxies are consistent with having almost perfectly oblate velocity ellipsoids. Tangential anisotropy in NGC524 coincides with the size of SMBH sphere of influence and the core region in the light profile. We test the accuracy to which Mbh can be measured using seeings obtained from typical LGS AO observations, and conclude that for a typical conditions and Mbh the expected uncertainty is of the order of 50%.Comment: 19 pages, 14 figure

    Spectroscopic evidence of distinct stellar populations in the counter-rotating stellar disks of NGC 3593 and NGC 4550

    Full text link
    We present the results of integral-field spectroscopic observations of the two disk galaxies NGC 3593 and NGC 4550 obtained with VIMOS/VLT. Both galaxies are known to host 2 counter-rotating stellar disks, with the ionized gas co-rotating with one of them. We measured in each galaxy the ionized gas kinematics and metallicity, and the surface brightness, kinematics, mass surface density, and the stellar populations of the 2 stellar components to constrain the formation scenario of these peculiar galaxies. We applied a novel spectroscopic decomposition technique to both galaxies, to separate the relative contribution of the 2 counter-rotating stellar and one ionized-gas components to the observed spectrum. We measured the kinematics and the line strengths of the Lick indices of the 2 counter-rotating stellar components. We modeled the data of each stellar component with single stellar population models that account for the alpha/Fe overabundance. In both galaxies we successfully separated the main from the secondary stellar component that is less massive and rotates in the same direction of the ionized-gas component. The 2 stellar components have exponential surface-brightness profiles. In both galaxies, the two counter-rotating stellar components have different stellar populations: the secondary stellar disk is younger, more metal poor, and more alpha-enhanced than the main galaxy stellar disk. Our findings rule out an internal origin of the secondary stellar component and favor a scenario where it formed from gas accreted on retrograde orbits from the environment fueling an in situ outside-in rapid star formation. The event occurred ~ 2 Gyr ago in NGC 3593, and ~ 7 Gyr ago in NGC 4550. The binary galaxy merger scenario cannot be ruled out, and a larger sample is required to statistically determine which is the most efficient mechanism to build counter-rotating stellar disks (abridged).Comment: 13 pages, 9 figures, accepted for publication in Astronomy and Astrophysic
    corecore