115 research outputs found

    The rhythm of the night: patterns of activity of the European wildcat in the Italian peninsula

    Get PDF
    The European wildcat is a threatened carnivore, whose ecology is still scarcely studied, especially in Mediterranean areas. In this study, we estimated activity rhythm patterns of this felid, by means of camera-trapping at three spatial scales: (i) whole country (Italy); (ii) biogeographical areas; (iii) latitudinal zones. The activity rhythms patterns were also calculated according to temporal scales: (1) warm semester; (2) cold semester and (3) seasonal scales. Lastly, we also tested whether the effect of moon phases affected the wildcat activity. We conducted the analysis on a total of 975 independent events collected in 2009-2021, from 285 locations, in 65,800 camera days. We showed that the wildcat in Italy exhibits a > 70% nocturnal behaviour, with 20% of diurnal activity, at all spatial scales, and throughout the whole year, with peaks at 10.00 p.m. and 04.00 a.m. We observed a high overlap of wildcat activity rhythms between different biogeographical and latitudinal zones. The wildcat was mainly active on the darkest nights, reducing its activity in bright moonlight nights. Diurnal activity was greater in the warm months and decreased with the distance from shrubs and woodlands, most likely according to activity rhythms of its main prey, water presence in summer, the care of offspring and the availability of shelter sites. Conversely, the distance to paved roads seems to have no significant effects on diurnal activity, suggesting that, in presence of natural shelters, the wildcat probably may tolerate these infrastructures. We suggested limited plasticity in activity rhythm patterns of the wildcat, emphasizing the importance of dark hours for this species

    Amyloid Precursor-Like Protein 2 deletion-induced retinal synaptopathy related to congenital stationary night blindness: structural, functional and molecular characteristics.

    Get PDF
    Amyloid precursor protein knockout mice (APP-KO) have impaired differentiation of amacrine and horizontal cells. APP is part of a gene family and its paralogue amyloid precursor-like protein 2 (APLP2) has both shared as well as distinct expression patterns to APP, including in the retina. Given the impact of APP in the retina we investigated how APLP2 expression affected the retina using APLP2 knockout mice (APLP2-KO). Using histology, morphometric analysis with noninvasive imaging technique and electron microscopy, we showed that APLP2-KO retina displayed abnormal formation of the outer synaptic layer, accompanied with greatly impaired photoreceptor ribbon synapses in adults. Moreover, APLP2-KO displayed a significant decease in ON-bipolar, rod bipolar and type 2 OFF-cone bipolar cells (36, 21 and 63 %, respectively). Reduction of the number of bipolar cells was accompanied with disrupted dendrites, reduced expression of metabotropic glutamate receptor 6 at the dendritic tips and alteration of axon terminals in the OFF laminae of the inner plexiform layer. In contrast, the APP-KO photoreceptor ribbon synapses and bipolar cells were intact. The APLP2-KO retina displayed numerous phenotypic similarities with the congenital stationary night blindness, a non-progressive retinal degeneration disease characterized by the loss of night vision. The pathological phenotypes in the APLP2-KO mouse correlated to altered transcription of genes involved in pre- and postsynatic structure/function, including CACNA1F, GRM6, TRMP1 and Gα0, and a normal scotopic a-wave electroretinogram amplitude, markedly reduced scotopic electroretinogram b-wave and modestly reduced photopic cone response. This confirmed the impaired function of the photoreceptor ribbon synapses and retinal bipolar cells, as is also observed in congenital stationary night blindness. Since congenital stationary night blindness present at birth, we extended our analysis to retinal differentiation and showed impaired differentiation of different bipolar cell subtypes and an altered temporal sequence of development from OFF to ON laminae in the inner plexiform layer. This was associated with the altered expression patterns of bipolar cell generation and differentiation factors, including MATH3, CHX10, VSX1 and OTX2. These findings demonstrate that APLP2 couples retina development and synaptic genes and present the first evidence that APLP2 expression may be linked to synaptic disease

    High intake of sugars and starch, low number of meals and low roughage intake are associated with equine gastric ulcer syndrome in a Belgian cohort

    No full text
    Equine gastric ulcer syndrome (EGUS) is a pathological condition affecting the glandular and squamous regions of the stomach. It is characterized by non-specific clinical signs, behavioural changes or can also be found without any overt clinical manifestations. Nutritional factors such as intermittent feeding, high sugars and starch intake, large amounts of straw as forage and prolonged time without access to forage have all been associated with an increased risk of equine squamous gastric disease (ESGD). The aim of this study was to investigate which nutritional practices are commonly seen in clinical ESGD cases in Belgium. Medical records of 27 horses referred to the equine nutritional service at Ghent University (2013-2018) due to equine gastric ulcer lesions were reviewed. Twenty-one healthy horses referred for dietary evaluation during the same period were selected as control cases (CC). Dietary evaluation was performed on an individual basis. Forage/concentrate ratio on dry matter basis, forage content in the diet, total dietary sugars and starch intake per day and per meal were analysed. Retrospective descriptive and statistical analyses were performed. Significantly, higher amounts of forage intake (%DM per BW) in the CC vs. ESGD group were noted (p <= .05) with average values of 1.39 (SD +/- 0.27) and 1.27 (SD +/- 0.70) respectively. There were no significant differences for sugars and starch intake in g/kg BW/day (p = .18). However, the sugars and starch intake per meal (g/kg BW/meal) in the CC group (average value 1.06, SD +/- 0.56) was significantly (p < .001) lower than in the EGUS group (average value 1.85 SD +/- 0.78). Forage intake below the recommended absolute minimum value as well as high sugars and starch intake were most commonly associated with EGUS in the present case series. An adequate diet formulation taking into account these main nutritional factors is therefore essential to avoid gastric problems in horses

    The N-Terminal residues 43 to 60 form the interface for dopamine mediated α-synuclein dimerisation

    Get PDF
    α-synuclein (α-syn) is a major component of the intracellular inclusions called Lewy bodies, which are a key pathological feature in the brains of Parkinson's disease patients. The neurotransmitter dopamine (DA) inhibits the fibrillisation of α-syn into amyloid, and promotes α-syn aggregation into SDS-stable soluble oligomers. While this inhibition of amyloid formation requires the oxidation of both DA and the methionines in α-syn, the molecular basis for these processes is still unclear. This study sought to define the protein sequences required for the generation of oligomers. We tested N- (α-syn residues 43-140) and C-terminally (1-95) truncated α-syn, and found that similar to full-length protein both truncated species formed soluble DA: α-syn oligomers, albeit 1-95 had a different profile. Using nuclear magnetic resonance (NMR), and the N-terminally truncated α-syn 43-140 protein, we analysed the structural characteristics of the DA:α-syn 43-140 dimer and α-syn 43-140 monomer and found the dimerisation interface encompassed residues 43 to 60. Narrowing the interface to this small region will help define the mechanism by which DA mediates the formation of SDS-stable soluble DA:α-syn oligomers

    Multiple endocrine neoplasia type 2 syndromes (MEN 2): results from the ItaMEN network analysis on the prevalence of different genotypes and phenotypes.

    Get PDF
    OBJECTIVE: Multiple endocrine neoplasia type 2 (MEN 2) is a genetic disease characterized by medullary thyroid carcinoma (MTC) associated (MEN 2A and 2B) or not familial MTC (FMTC) with other endocrine neoplasia due to germline RET gene mutations. The prevalence of these rare genetic diseases and their corresponding RET mutations are unknown due to the small size of the study population. METHODS: We collected data on germline RET mutations of 250 families with hereditary MTC followed in 20 different Italian centres. RESULTS AND CONCLUSIONS: The most frequent RET amino acid substitution was Val804Met (19.6%) followed by Cys634Arg (13.6%). A total of 40 different germline RET mutations were present. Six families (2.4%) were negative for germline RET mutations. The comparison of the prevalence of RET germline mutations in the present study with those published by other European studies showed a higher prevalence of Val804Met and Ser891Ala mutations and a lower prevalence of Leu790Phe and Tyr791Phe (P<0.0001). A statistically significant higher prevalence of mutations affecting non-cysteine codons was also found (P<0.0001). Furthermore, the phenotype data collection showed an unexpected higher prevalence of FMTC (57.6%) with respect to other MEN 2 syndromes (34% MEN 2A and 6.8% of MEN 2B). In conclusion, we observed a statistically significant different pattern of RET mutations in Italian MEN 2 families with respect to other European studies and a higher prevalence of FMTC phenotype. The different ethnic origins of the patients and the particular attention given to analysing apparently sporadic MTC for RET germline mutations may explain these findings

    Copper binding to the Alzheimer’s disease amyloid precursor protein

    Get PDF
    Alzheimer’s disease is the fourth biggest killer in developed countries. Amyloid precursor protein (APP) plays a central role in the development of the disease, through the generation of a peptide called Aβ by proteolysis of the precursor protein. APP can function as a metalloprotein and modulate copper transport via its extracellular copper binding domain (CuBD). Copper binding to this domain has been shown to reduce Aβ levels and hence a molecular understanding of the interaction between metal and protein could lead to the development of novel therapeutics to treat the disease. We have recently determined the three-dimensional structures of apo and copper bound forms of CuBD. The structures provide a mechanism by which CuBD could readily transfer copper ions to other proteins. Importantly, the lack of significant conformational changes to CuBD on copper binding suggests a model in which copper binding affects the dimerisation state of APP leading to reduction in Aβ production. We thus predict that disruption of APP dimers may be a novel therapeutic approach to treat Alzheimer’s disease

    Metal Ionophore Treatment Restores Dendritic Spine Density and Synaptic Protein Levels in a Mouse Model of Alzheimer's Disease

    Get PDF
    We have previously demonstrated that brief treatment of APP transgenic mice with metal ionophores (PBT2, Prana Biotechnology) rapidly and markedly improves learning and memory. To understand the potential mechanisms of action underlying this phenomenon we examined hippocampal dendritic spine density, and the levels of key proteins involved in learning and memory, in young (4 months) and old (14 months) female Tg2576 mice following brief (11 days) oral treatment with PBT2 (30 mg/kg/d). Transgenic mice exhibited deficits in spine density compared to littermate controls that were significantly rescued by PBT2 treatment in both the young (+17%, p<0.001) and old (+32%, p<0.001) animals. There was no effect of PBT2 on spine density in the control animals. In the transgenic animals, PBT2 treatment also resulted in significant increases in brain levels of CamKII (+57%, p = 0.005), spinophilin (+37%, p = 0.04), NMDAR1A (+126%, p = 0.02), NMDAR2A (+70%, p = 0.05), pro-BDNF (+19%, p = 0.02) and BDNF (+19%, p = 0.04). While PBT2-treatment did not significantly alter neurite-length in vivo, it did increase neurite outgrowth (+200%, p = 0.006) in cultured cells, and this was abolished by co-incubation with the transition metal chelator, diamsar. These data suggest that PBT2 may affect multiple aspects of snaptic health/efficacy. In Alzheimer's disease therefore, PBT2 may restore the uptake of physiological metal ions trapped within extracellular β-amyloid aggregates that then induce biochemical and anatomical changes to improve cognitive function

    Post translational changes to α-synuclein control iron and dopamine trafficking : a concept for neuron vulnerability in Parkinson's disease

    Get PDF
    Parkinson's disease is a multifactorial neurodegenerative disorder, the aetiology of which remains elusive. The primary clinical feature of progressively impaired motor control is caused by a loss of midbrain substantia nigra dopamine neurons that have a high α-synuclein (α-syn) and iron content. α-Syn is a neuronal protein that is highly modified post-translationally and central to the Lewy body neuropathology of the disease. This review provides an overview of findings on the role post translational modifications to α-syn have in membrane binding and intracellular vesicle trafficking. Furthermore, we propose a concept in which acetylation and phosphorylation of α-syn modulate endocytic import of iron and vesicle transport of dopamine during normal physiology. Disregulated phosphorylation and oxidation of α-syn mediate iron and dopamine dependent oxidative stress through impaired cellular location and increase propensity for α-syn aggregation. The proposition highlights a connection between α-syn, iron and dopamine, three pathological components associated with disease progression in sporadic Parkinson's disease

    Casemix, management, and mortality of patients receiving emergency neurosurgery for traumatic brain injury in the Global Neurotrauma Outcomes Study: a prospective observational cohort study

    Get PDF

    The landscape of inherited and de novo copy number variants in a plasmodium falciparum genetic cross

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Copy number is a major source of genome variation with important evolutionary implications. Consequently, it is essential to determine copy number variant (CNV) behavior, distributions and frequencies across genomes to understand their origins in both evolutionary and generational time frames. We use comparative genomic hybridization (CGH) microarray and the resolution provided by a segregating population of cloned progeny lines of the malaria parasite, <it>Plasmodium falciparum</it>, to identify and analyze the inheritance of 170 genome-wide CNVs.</p> <p>Results</p> <p>We describe CNVs in progeny clones derived from both Mendelian (i.e. inherited) and non-Mendelian mechanisms. Forty-five CNVs were present in the parent lines and segregated in the progeny population. Furthermore, extensive variation that did not conform to strict Mendelian inheritance patterns was observed. 124 CNVs were called in one or more progeny but in neither parent: we observed CNVs in more than one progeny clone that were not identified in either parent, located more frequently in the telomeric-subtelomeric regions of chromosomes and singleton <it>de novo </it>CNVs distributed evenly throughout the genome. Linkage analysis of CNVs revealed dynamic copy number fluctuations and suggested mechanisms that could have generated them. Five of 12 previously identified expression quantitative trait loci (eQTL) hotspots coincide with CNVs, demonstrating the potential for broad influence of CNV on the transcriptional program and phenotypic variation.</p> <p>Conclusions</p> <p>CNVs are a significant source of segregating and <it>de novo </it>genome variation involving hundreds of genes. Examination of progeny genome segments provides a framework to assess the extent and possible origins of CNVs. This segregating genetic system reveals the breadth, distribution and dynamics of CNVs in a surprisingly plastic parasite genome, providing a new perspective on the sources of diversity in parasite populations.</p
    corecore