217 research outputs found

    Food Microbial Biodiversity and “Microbes of Protected Origin”

    Get PDF
    Over the past decades, traditional food systems have evolved from poorly coordinated networks to globalized complexes of regulated trade, and the geographical indications (GIs) agro-food market size is approximately $50 billion. Belonging to the intellectual property law as collective property rights, the “GI is a sign used on goods that have a specific geographical origin and possess qualities, reputation, or characteristics that are essentially attributable to that place of origin” (World Intellectual Property Organization (WIPO), 2011). The global impact of “GI” is widely testified through the scientific, social, and economic importance of traditional foods (World Intellectual Property Organization (WIPO), 2011; World Trade Organization (WTO), 2011). In fact, GIs are known to be the earliest type of trademarks. From an edible perspective, this concept is simply and well presented by Bisson et  al. (2002): “consumers expect wine from a particular region to possess unique qualities that differentiate it from other wines of the same varietal from other regions.” The GI system is based upon the concept of “terroir,” a French word used to describe all geographical aspects of the environment, including the climate, geology, cultivar, human, technical, and cultural practices (and the interactions of these factors) that can influence local production

    Influence of cladding panels on dynamic behaviour of one-storey precast building

    Get PDF
    Recent Italian seismic events, as L’Aquila earthquake (2009) and Emilia earthquake (2012), demonstrated the deficiency of the actual design approach of the cladding panels system in precast buildings. Collapse of these precast panels is observed due to the connection system failure. Although cladding panels are designed as non-structural elements according to the actual code approach, i.e. no interaction with the structure is considered, a seismic excitations could make the panels collaborating with the resistant system. In this paper the influence of vertical cladding panels on seismic behavior of one-story precast concrete buildings is investigated. A parametric study is carried out to judge the influence of the cladding presence on the dynamic characteristics of precast structures. At this purpose, modal analyses are performed on both bare and infilled models. The parametric study shows a high influence of the panels on the first period of the structure, as well as the inadequacy of the code relationships for the evaluation of the natural period for such typology of structure. More suitable relations are proposed in order to evaluate the seismic demand of one story precast buildings both in the case of bare and infilled system

    Involvement of the sigma factor sigma H in the regulation of a small heat shock protein gene in Lactobacillus plantarum WCFS1

    Get PDF
    The relative expression of the heat shock protein hsp18.55 gene was monitored in Lactobacillus plantarum ΔctsR and ΔftsH mutant strains. Transcription of the hsp18.55 gene was drastically repressed in the ΔctsR mutant of L. plantarum; conversely, significant transcriptional induction of the hsp18.55 gene was noted in the L. plantarum ΔftsH strain. Overall, these results suggest a possible regulation of the hsp18.55 gene by the alternative sigma H factor in L. plantarum. We also noted a similarity with the small heat shock gene (shs) locus of Lactobacillus brevis, which might indicate a possible evolutionary relationship

    Real-Time Monitoring of Volatile Compounds Losses in the Oven during Baking and Toasting of Gluten-Free Bread Doughs: A PTR-MS Evidence

    Get PDF
    ProducciĂłn CientĂ­ficaLosses of volatile compounds during baking are expected due to their evaporation at the high temperatures of the oven, which can lead to a decrease in the aroma intensity of the final product, which is crucial for gluten-free breads that are known for their weak aroma. Volatiles from fermentation and lipids oxidation are transferred from crumb to crust, and they flow out to the air together with Maillard and caramelisation compounds from the crust. In this study, the release to the oven of volatile compounds from five gluten-free breads (quinoa, teff and rice flours, and corn and wheat starches) and wheat bread during baking and toasting was measured in real-time using proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS). Baking showed different volatile release patterns that are described by bell-shaped curves, plateaus and exponential growths. Flour-based breads had the higher overall volatile release during baking, but also high ratios in the final bread, while starch-based breads showed high pyrazine releases due to moisture losses. Meanwhile, toasting promoted the release of volatile compounds from the bread matrix, but also the additional generation of volatiles from Maillard reaction and caramelisation. Interestingly, gluten-free breads presented higher losses of volatiles during baking than wheat bread, which could partially explain their weaker aroma.Autonomous Province of Trento grant (ADP 2018 and ADP 2020

    Development of a Comprehensive Pavement Design System for Roads in Wind and Solar Farms

    Get PDF
    This paper briefly, illustrates the structure and contents of an ongoing research program aimed at developing a set of procedures and tools to be used for the design of pavements in renewable energy projects and mainly in wind and solar farms. Challenges related to this topic derive from the non-standard nature of several factors that affect the structural and functional performance of such pavements, with the consequent need of employing purposely defined prediction methods, design criteria and specifications. Further crucial aspects to be taken in account in the research program are related to the life cycle cost analysis of pavements, to be carried out in a multinational context by considering alternative scenarios according to an OPEX (operating expense) versus CAPEX (capital expenditure) philosophy. It is envisioned that results and deliverables of the project will contribute to the enhancement of the effectiveness of operations in wind and solar farms, optimizing investments and leading to the selection of more sustainable pavement solutions

    Selection of indigenous yeast strains for the production of sparkling wines from native Apulian grape varieties

    Get PDF
    Abstract We report the first polyphasic characterization of native Saccharomyces cerevisiae in order to select candidate strains for the design of starter cultures tailored for Apulian sparkling wines obtained from local grape variety. In addition, it is the first survey in our region that propose the selection of autochthonous starter cultures for sparkling wine i) including a preliminary tailored genotypic and technological screening, and ii) monitoring analytical contribution during secondary fermentation in terms of volatile compounds (VOCs). Furthermore, we exploit the potential contribute of autochthonous cultures throughout the productive chain, including the possible improvement of base wine. One representative strain from each cluster was characterized i) for tolerance to abiotic and biotic stressors peculiar of sparkling wine fermentation, ii) for the performances in base wine production, and iii) for the aptitudes to promote in-bottle secondary fermentation in white and rose sparkling wines, both obtained from Apulian grape varieties. Genetic characterization led to group 164 S. cerevisiae in 16 genetic clusters based on interdelta profiles. Stress tolerance assays shown a certain correlation with fermentative attitude. Our evidences demonstrated a different fermentative behavior and release of VOCs of the different strains in association with primary and secondary fermentations and as function of wine and rose sparkling wine. Furthermore, performances in white/rose sparkling wines have been found to be strain-dependent characters. Overall, we propose different strains as biotechnological resources suitable to improve the quality of regional sparkling wines and to provide a driver of innovation/segmentation in the market

    Use of autochthonous yeasts and bacteria in order to control Brettanomyces bruxellensis in wine

    Get PDF
    Biocontrol strategies for the limitation of undesired microbial developments in foods and beverages represent a keystone toward the goal of more sustainable food systems. Brettanomyces bruxellensis is a wine spoilage microorganism that produces several compounds that are detrimental for the organoleptic quality of the wine, including some classes of volatile phenols. To control the proliferation of this yeast, sulfur dioxide is commonly employed, but the efficiency of this compound depends on the B. bruxellensis strain; and it is subject to wine composition and may induce the entrance in a viable, but nonculturable state of yeasts. Moreover, it can also elicit allergic reactions in humans. In recent years, biological alternatives to sulfur dioxide such as the use of yeasts and lactic acid bacteria starter cultures as biocontrol agents are being investigated. The controlled inoculation of starter cultures allows secure, fast and complete alcoholic and malolactic fermentations, limiting the residual nutrients that B. bruxellensis utilizes to survive and grow in wine. The current study is focused on the assessment of the effect of autochthonous yeasts and bacterial strains from the Apulia Region on the development of B. bruxellensis in wine, in terms of both growth and volatile phenols' production. The investigation evidences the positive role of indigenous mixed cultures in the control of this spoilage yeast, either co-inoculating different strains of Saccharomyces cerevisiae, S. cerevisiae/non-Saccharomyces or co-inoculating S. cerevisiae/Oenococcus oeni. Our findings expand the existing knowledge of the application of protechnological microbial diversity and of non-Saccharomyces as a biocontrol agent in oenology. We report a further demonstration of the interest in selecting indigenous strains as a strategic tool for winemakers interested in the improvement of regional wines

    Technological properties of Lactobacillus plantarum strains isolated from grape must fermentation

    Get PDF
    Malolactic fermentation (MLF) is a secondary fermentation in wine that usually takes place during or at the end of alcoholic fermentation. Lactobacillus plantarum is able to conduct MLF (particularly under high pH conditions and in co-inoculation with yeasts), and some strains are commercially used as MLF starter cultures. Recent evidences suggest a further use of selected L. plantarum strains for the pre-alcoholic acidification of grape must. In this study, we have carried out an integrated (molecular, technological, and biotechnological) characterization of L. plantarum strains isolated from Apulian wines in order to combine the two protechnological features (MLF performances and must acidification aptitudes). Several parameters such as sugar, pH and ethanol tolerance, resistance to lyophilisation and behaviour in grape must were evaluated. Moreover, the expression of stress gene markers was investigated and was linked to the ability of L. plantarum strains to grow and perform MLF. Co-inoculation of Saccharomyces cerevisiae and L. plantarum in grape must improves the bacterial adaptation to harsh conditions of wine and reduced total fermentation time. For the first time, we applied a polyphasic approach for the characterization of L. plantarum in reason of the MLF performances. The proposed procedure can be generalized as a standard method for the selection of bacterial resources for the design of MLF starter cultures tailored for high pH must

    Biogenic amines degradation by Lactobacillus plantarum: toward a potential application in wine.

    Get PDF
    Biogenic amines in wine represent a toxicological risk for the health of the consumer, with several trade implications. In this study 26 strains of Lactobacillus plantarum were analysed for their ability to degrade biogenic amines commonly found during wine fermentation. Two strains of L. plantarum were selected in reason of their ability to degrade putrescine and tyramine. The degradation was assessed in vitro, both in presence of the biogenic amines and in presence of the specific chemical precursor and of producer bacteria. The two L. plantarum biotypes were found capable to work synergically. In addition, the survival in wine-like medium and the aptitude to degrade malic acid after alcoholic fermentation of the selected L. plantarum strains was analysed. Our results suggest the potential application of wine L. plantarum strains to design malolactic starter cultures able to degrade biogenic amines in wine
    • 

    corecore