119 research outputs found

    Analysis of the gene expression profile of mouse male meiotic germ cells

    Get PDF
    Wide genome analysis of difference in gene expression between spermatogonial populations from 7-day-old mice and pachytene spermatocytes from 18-day-old mice was performed using Affymetrix gene chips representing approximately 12,500 mouse known genes or EST sequences, spanning approximately 1/3rd of the mouse genome. To delineate differences in the profile of gene expression between mitotic and meiotic stages of male germ cell differentiation, expressed genes were grouped in functional clusters. The analysis confirmed the previously described pre-meiotic or meiotic expression for several genes, in particular for those involved in the regulation of the mitotic and meiotic cell cycle, and for those whose transcripts are accumulated during the meiotic stages to be translated later in post-meiotic stages. Differential expression of several additional genes was discovered. In few cases (pro-apoptotic factors Bak, Bad and Bax), data were in conflict with the previously published stage-dependent expression of genes already known to be expressed in male germ cells. Northern blot analysis of selected genes confirmed the results obtained with the microarray chips. Six of these were novel genes specifically expressed in pachytene spermatocytes: a chromatin remodeling factor (chrac1/YCL1), a homeobox gene (hmx1), a novel G-coupled receptor for an unknown ligand (Gpr19), a glycoprotein of the intestinal epithelium (mucin 3), a novel RAS activator (Ranbp9), and the A630056B21Rik gene (predicted to encode a novel zinc finger protein). These studies will help to delineate the global patterns of gene expression characterizing male germ cell differentiation for a better understanding of regulation of spermatogenesis in mammals

    Suppression of circulating IgD+CD27+ memory B cells in infants living in a malaria-endemic region of Kenya

    Get PDF
    Background: Plasmodium falciparum infection leads to alterations in B cell subset distribution. During infancy, development of peripheral B cell subsets is also occurring. However, it is unknown if infants living a malaria endemic region have alterations in B cell subsets that is independent of an age effect. Methods: To evaluate the impact of exposure to P. falciparum on B cell development in infants, flow cytometry was used to analyse the distribution and phenotypic characteristic of B cell subsets in infant cohorts prospectively followed at 12, 18 and 24 months from two geographically proximate regions in western Kenya with divergent malaria exposure i.e. Kisumu (malaria-endemic, n = 24) and Nandi (unstable malaria transmission, n = 21). Results: There was significantly higher frequency and absolute cell numbers of CD19+ B cells in Kisumu relative to Nandi at 12(p = 0.0440), 18(p = 0.0210) and 24 months (p = 0.0493). No differences were observed between the infants from the two sites in frequencies of naïve B cells (IgD+CD27-) or classical memory B cells (IgD-CD27+). However, immature transitional B cells (CD19+CD10+CD34-) were higher in Kisumu relative to Nandi at all three ages. In contrast, the levels of non-class switched memory B cells (CD19+IgD+CD27+) were significantly lower overall in Kisumu relative to Nandi at significantly at 12 (p = 0.0144), 18 (p = 0.0013) and 24 months (p = 0.0129). Conclusions: These data suggest that infants living in malaria endemic regions have altered B cell subset distribution. Further studies are needed to understand the functional significance of these changes and long-term impact on ability of these infants to develop antibody responses to P. falciparum and heterologous infections

    The soluble pattern recognition receptor PTX3 links humoral innate and adaptive immune responses by helping marginal zone B cells

    Get PDF
    Pentraxin 3 (PTX3) is a fluid-phase pattern recognition receptor of the humoral innate immune system with ancestral antibody-like properties but unknown antibody-inducing function. In this study, we found binding of PTX3 to splenic marginal zone (MZ) B cells, an innate-like subset of antibody-producing lymphocytes strategically positioned at the interface between the circulation and the adaptive immune system. PTX3 was released by a subset of neutrophils that surrounded the splenic MZ and expressed an immune activation–related gene signature distinct from that of circulating neutrophils. Binding of PTX3 promoted homeostatic production of IgM and class-switched IgG antibodies to microbial capsular polysaccharides, which decreased in PTX3-deficient mice and humans. In addition, PTX3 increased IgM and IgG production after infection with blood-borne encapsulated bacteria or immunization with bacterial carbohydrates. This immunogenic effect stemmed from the activation of MZ B cells through a neutrophil-regulated pathway that elicited class switching and plasmablast expansion via a combination of T cell–independent and T cell–dependent signals. Thus, PTX3 may bridge the humoral arms of the innate and adaptive immune systems by serving as an endogenous adjuvant for MZ B cells. This property could be harnessed to develop more effective vaccines against encapsulated pathogens.European Advanced grant ERC-2011-ADG-20110310, Ministerio de Ciencia e Innovación grant SAF2011-25241, and Marie Curie reintegra -tion grant PIRG-08-GA-2010-276928 to A. Cerutti; Sara Borrell post-doctoral fellow -ships to A. Chorny; and US National Institutes of Health grants R01 AI57653, U01 AI95613, P01 AI61093, and U19 096187 to A. Cerutti. C. Cunha and A. Carvalho were funded by grants from Fundação para a Ciência e Tecnologia, co-funded by Programa Operacional Regional do Norte (ON.2—O Novo Norte)., and from the Quadro de Referência Estratégico Nacional (SFRH/BPD/96176/2013 to C. Cunha and grant IF/00735/2014 to A. Carvalho) through the Fundo Europeu de Desenvolvimento Regional and Projeto Estratégico (LA 26 – 2013–2014; PEst-C/SAU/LA0026/2013

    IgM memory B cells: a mouse/human paradox

    Get PDF
    Humoral memory is maintained by two types of persistent cells, memory B cells and plasma cells, which have different phenotypes and functions. Long-lived plasma cells can survive for a lifespan within a complex niche in the bone marrow and provide continuous protective serum antibody levels. Memory B cells reside in secondary lymphoid organs, where they can be rapidly mobilized upon a new antigenic encounter. Surface IgG has long been taken as a surrogate marker for memory in the mouse. Recently, however, we have brought evidence for a long-lived IgM memory B cell population in the mouse, while we have also argued that, in humans, these same cells are not classical memory B cells but marginal zone (MZ) B cells which, as opposed to their mouse MZ counterpart, recirculate and carry a mutated B cell receptor. In this review, we will discuss these apparently paradoxical results

    Increased Expression of Toll-Like Receptors by Monocytes and Natural Killer Cells in ANCA-Associated Vasculitis

    Get PDF
    INTRODUCTION: Toll-like receptors (TLRs) are a family of receptors that sense pathogen associated patterns such as bacterial cell wall proteins. Bacterial infections are associated with anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV). Here, we assessed the expression of TLRs 2, 4, and 9 by peripheral blood leukocytes from patients with AAV, and investigated TLR mediated responses ex vivo. METHODS: Expression of TLRs was determined in 38 AAV patients (32 remission, 6 active disease), and 20 healthy controls (HC). Membrane expression of TLRs 2, 4, and 9, and intracellular expression of TLR9 by B lymphocytes, T lymphocytes, NK cells, monocytes and granulocytes was assessed using 9-color flowcytometry. Whole blood from 13 patients and 7 HC was stimulated ex vivo with TLR 2, 4 and 9 ligands and production of cytokines was analyzed. RESULTS: In patients, we observed increased proportions of TLR expressing NK cells. Furthermore, patient monocytes expressed higher levels of TLR2 compared to HC, and in a subset of patients an increased proportion of TLR4(+) monocytes was observed. Monocytes from nasal carriers of Staphylococcus aureus expressed increased levels of intracellular TLR9. Membrane expression of TLRs by B lymphocytes, T lymphocytes, and granulocytes was comparable between AAV patients and HC. Patients with active disease did not show differential TLR expression compared to patients in remission. Ex vivo responses to TLR ligands did not differ significantly between patients and HC. CONCLUSIONS: In AAV, monocytes and NK cells display increased TLR expression. Increased TLR expression by these leukocytes, probably resulting from increased activation, could play a role in disease (re)activation

    Cyclic adenosine monophosphate (cAMP) stimulation of the kit ligand promoter in Sertoli cells requires an Sp1-binding region, a canonical TATA box, and a cAMP-Induced factor binding to an immediately downstream GC-rich element

    No full text
    Expression of Kit ligand (KL) mRNA is induced in primary prepuberal Sertoli cells by FSH and by other agents that increase cAMP levels. The cAMP effect is exerted at the transcriptional level and appears to be cell type specific, since it is not observed in other KL-expressing primary cells or cell lines. Deletion analysis of the 5'-flanking region of the mouse KL gene shows that the proximal promoter sequence between -88 and +8 from the transcriptional start site is necessary and sufficient to obtain the full cAMP responsiveness of the promoter in primary mouse Sertoli cells. in the -88/+8 promoter region, several cis-acting elements play a role in cAMP response. The -88/-56 sequence is necessary for full induction of the gene, since its removal causes a drastic decrease in cAMP responsiveness; however, cAMP-stimulated expression is still observed with the minimal promoter region between -55 and +8. A more detailed mutational analysis of the minimal promoter region shows that mutations in the canonical TATA box sequence and in an immediately downstream GC-rich element completely abolish cAMP responsiveness. DNA-binding experiments show that transcription factor Sp1 binds to the -88/-56 fragment of the KL proximal promoter in both control and cAMP-stimulated cells, whereas a new cAMP-induced complex is observed when the -55/+8 minimal promoter region is used as probe. The canonical TATA box sequence is essential for formation of the latter complex. We also show that the binding of an unknown nuclear factor (different from Sp1, Egr-1, Rnf6, and AP-2) to a GC-rich element between -19 and +8 increases after cAMP treatment, and this effect seems to be specific of primary Sertoli cells. Thus, cAMP-induced transcription from the KL gene promoter in primary mouse Sertoli cells is mediated by a complex interaction among a Sp1-binding region, factors recognizing the canonical TATA box sequence, and a not yet identified cAMP-induced factor binding a GC-rich sequence just downstream from it

    B cell modulation strategies in autoimmunity. the SLE example

    No full text
    The paradigm that T cells are the prime effectors of autoimmune diseases has been recently challenged by growing evidence that B-lymphocytes play a role in the development, re-activation and persistence of autoimmune disorders. B-cells of different subsets may play different roles in autoimmune pathologies due to their ability to secrete antibodies, produce cytokines, present antigen and form ectopic germinal centers. Thus, a given therapeutic approach or drug may have distinct outcomes depending on which specific B cell subset is targeted. Immunosuppressive therapies such as azathioprine (AZA), cyclophosphamide (CyC) or methotrexate (MTX) are conventionally used in autoimmune diseases with the aim of reducing disease activity and improving the patient's general health conditions. These treatments do not target a specific cellular type or subset and have substantial side effects, such as impairment of liver function and fertility. Moreover, autoimmune patients may be refractory to immunosuppressive therapy. In these cases finding an effective treatment becomes a challenge. The fast evolution in antibody technology is leading to the production of a wide array of humanized monoclonal antibodies, targeting specific cell types or pathways, initiating a new era in the treatment of autoimmune disorders. In addition, the recent discovery that toll like receptors (TLRs) activation can fire up autoimmunity in humans and maintain disease gives the grounds for the development of new drugs targeting the TLR/MyD88 pathway. In contrast to conventional immune-suppression, the availability of drugs interfering with B-cell specific pathogenetic pathways gives the possibility to choose therapies tailored to each disease and, possibly, to each patient

    A refined approach to detect and measure minimal residual disease in childhood acute myeloid leukemia by flow cytometry.

    No full text
    none7noneCapolunghi F;Capponi C;De Stefani B;Luciani M;Locatelli F;Muraca M;Carsetti RCapolunghi, F; Capponi, C; De Stefani, B; Luciani, M; Locatelli, F; Muraca, Maurizio; Carsetti, R
    corecore