198 research outputs found

    Medical-grade silicone coated with rhamnolipid R89 is effective against Staphylococcus spp. Biofilms

    Get PDF
    Staphylococcus aureus and Staphylococcus epidermidis are considered two of the most important pathogens, and their biofilms frequently cause device-associated infections. Microbial biosurfactants recently emerged as a new generation of anti-adhesive and anti-biofilm agents for coating implantable devices to preserve biocompatibility. In this study, R89 biosurfactant (R89BS) was evaluated as an anti-biofilm coating on medical-grade silicone. R89BS is composed of homologues of the mono- (75%) and di-rhamnolipid (25%) families, as evidenced by mass spectrometry analysis. The antimicrobial activity against Staphylococcus spp. planktonic and sessile cells was evaluated by microdilution and metabolic activity assays. R89BS inhibited S. aureus and S. epidermidis growth with minimal inhibitory concentrations (MIC99) of 0.06 and 0.12 mg/mL, respectively and dispersed their pre-formed biofilms up to 93%. Silicone elastomeric discs (SEDs) coated by R89BS simple adsorption significantly counteracted Staphylococcus spp. biofilm formation, in terms of both built-up biomass (up to 60% inhibition at 72 h) and cell metabolic activity (up to 68% inhibition at 72 h). SEM analysis revealed significant inhibition of the amount of biofilm-covered surface. No cytotoxic effect on eukaryotic cells was detected at concentrations up to 0.2 mg/mL. R89BS-coated SEDs satisfy biocompatibility requirements for leaching products. Results indicate that rhamnolipid coatings are effective anti-biofilm treatments and represent a promising strategy for the prevention of infection associated with implantable devices

    BSM W W production with a jet veto

    Get PDF
    We consider the impact on W W production of the unique dimension-six operator coupling gluons to the Higgs field. In order to study this process, we have to appropriately model the effect of a veto on additional jets. This requires the resummation of large logarithms of the ratio of the maximum jet transverse momentum and the invariant mass of the W boson pair. We have performed such resummation at the appropriate accuracy for the Standard Model (SM) background and for a signal beyond the SM (BSM), and devised a simple method to interface jet-veto resummations with fixed-order event generators. This resulted in the fast numerical code MCFM-RE, the Resummation Edition of the fixed-order code MCFM. We compared our resummed predictions with parton-shower event generators and assessed the size of effects, such as limited detector acceptances, hadronisation and the underlying event, that were not included in our resummation. We have then used the code to compare the sensitivity of W W and Z Z production at the HL-LHC to the considered higher-dimension operator. We have found that W W can provide complementary sensitivity with respect to Z Z, provided one is able to control theory uncertainties at the percent-level. Our method is general and can be applied to the production of any colour singlet, both within and beyond the SM

    Ballistic matter waves with angular momentum: Exact solutions and applications

    Full text link
    An alternative description of quantum scattering processes rests on inhomogeneous terms amended to the Schroedinger equation. We detail the structure of sources that give rise to multipole scattering waves of definite angular momentum, and introduce pointlike multipole sources as their limiting case. Partial wave theory is recovered for freely propagating particles. We obtain novel results for ballistic scattering in an external uniform force field, where we provide analytical solutions for both the scattering waves and the integrated particle flux. Our theory directly applies to p-wave photodetachment in an electric field. Furthermore, illustrating the effects of extended sources, we predict some properties of vortex-bearing atom laser beams outcoupled from a rotating Bose-Einstein condensate under the influence of gravity.Comment: 42 pages, 8 figures, extended version including photodetachment and semiclassical theor

    A first unbiased global NLO determination of parton distributions and their uncertainties

    Get PDF
    We present a determination of the parton distributions of the nucleon from a global set of hard scattering data using the NNPDF methodology: NNPDF2.0. Experimental data include deep-inelastic scattering with the combined HERA-I dataset, fixed target Drell-Yan production, collider weak boson production and inclusive jet production. Next-to-leading order QCD is used throughout without resorting to K-factors. We present and utilize an improved fast algorithm for the solution of evolution equations and the computation of general hadronic processes. We introduce improved techniques for the training of the neural networks which are used as parton parametrization, and we use a novel approach for the proper treatment of normalization uncertainties. We assess quantitatively the impact of individual datasets on PDFs. We find very good consistency of all datasets with each other and with NLO QCD, with no evidence of tension between datasets. Some PDF combinations relevant for LHC observables turn out to be determined rather more accurately than in any other parton fit.Comment: 86 pages, 41 figures. PDF sets available from http://sophia.ecm.ub.es/nnpdf/nnpdf_pdfsets.htm and from LHAPDF. Final version to be published in Nucl. Phys. B. Various typos corrected and small clarifications added, fig. 4 added, extended discussion of data consistency especially in sect 5.1 and 5.

    Non-linear evolution in CCFM: The interplay between coherence and saturation

    Full text link
    We solve the CCFM equation numerically in the presence of a boundary condition which effectively incorporates the non-linear dynamics. We retain the full dependence of the unintegrated gluon distribution on the coherence scale, and extract the saturation momentum. The resulting saturation scale is a function of both rapidity and the coherence momentum. In Deep Inelastic Scattering this will lead to a dependence of the saturation scale on the photon virtuality in addition to the usual x-Bjorken dependence. At asymptotic energies the interplay between the perturbative non-linear physics, and that of the QCD coherence, leads to an interesting and novel dynamics where the saturation momentum itself eventually saturates. We also investigate various implementations of the "non-Sudakov" form factor. It is shown that the non-linear dynamics leads to almost identical results for different form factors. Finally, different choices of the scale of the running coupling are analyzed and implications for the phenomenology are discussed.Comment: 37 pages, 21 figure

    Effects of mushroom and chicory extracts on the shape, physiology and proteome of the cariogenic bacterium Streptococcus mutans

    Get PDF
    open16siDental caries is an infectious disease which results from the acidic demineralisation of the tooth enamel and dentine as a consequence of the dental plaque (a microbial biofilm) accumulation. Research showed that several foods contain some components with antibacterial and antiplaque activity. Previous studies indicated antimicrobial and antiplaque activities in a low-molecular-mass (LMM) fraction of extracts from either an edible mushroom (Lentinus edodes) or from Italian red chicory (Cichorium intybus).Signoretto, Caterina; Marchi, Anna; Bertoncelli, Anna; Burlacchini, Gloria; Milli, Alberto; Tessarolo, Francesco; Caola, Iole; Papetti, Adele; Pruzzo, Carla; Zaura, Egija; Lingström, Peter; Ofek, Itzhak; Spratt, David A; Pratten, Jonathan; Wilson, Michael; Canepari, PietroSignoretto, Caterina; Marchi, Anna; Bertoncelli, Anna; Burlacchini, Gloria; Milli, Alberto; Tessarolo, Francesco; Caola, Iole; Papetti, Adele; Pruzzo, Carla; Zaura, Egija; Lingström, Peter; Ofek, Itzhak; Spratt, David A; Pratten, Jonathan; Wilson, Michael; Canepari, Pietr

    A Grassmann integral equation

    Full text link
    The present study introduces and investigates a new type of equation which is called Grassmann integral equation in analogy to integral equations studied in real analysis. A Grassmann integral equation is an equation which involves Grassmann integrations and which is to be obeyed by an unknown function over a (finite-dimensional) Grassmann algebra G_m. A particular type of Grassmann integral equations is explicitly studied for certain low-dimensional Grassmann algebras. The choice of the equation under investigation is motivated by the effective action formalism of (lattice) quantum field theory. In a very general setting, for the Grassmann algebras G_2n, n = 2,3,4, the finite-dimensional analogues of the generating functionals of the Green functions are worked out explicitly by solving a coupled system of nonlinear matrix equations. Finally, by imposing the condition G[{\bar\Psi},{\Psi}] = G_0[{\lambda\bar\Psi}, {\lambda\Psi}] + const., 0<\lambda\in R (\bar\Psi_k, \Psi_k, k=1,...,n, are the generators of the Grassmann algebra G_2n), between the finite-dimensional analogues G_0 and G of the (``classical'') action and effective action functionals, respectively, a special Grassmann integral equation is being established and solved which also is equivalent to a coupled system of nonlinear matrix equations. If \lambda \not= 1, solutions to this Grassmann integral equation exist for n=2 (and consequently, also for any even value of n, specifically, for n=4) but not for n=3. If \lambda=1, the considered Grassmann integral equation has always a solution which corresponds to a Gaussian integral, but remarkably in the case n=4 a further solution is found which corresponds to a non-Gaussian integral. The investigation sheds light on the structures to be met for Grassmann algebras G_2n with arbitrarily chosen n.Comment: 58 pages LaTeX (v2: mainly, minor updates and corrections to the reference section; v3: references [4], [17]-[21], [39], [46], [49]-[54], [61], [64], [139] added

    Impact of Heavy Quark Masses on Parton Distributions and LHC Phenomenology

    Get PDF
    We present a determination of the parton distributions of the nucleon from a global set of hard scattering data using the NNPDF methodology including heavy quark mass effects: NNPDF2.1. In comparison to the previous NNPDF2.0 parton determination, the dataset is enlarged to include deep--inelastic charm structure function data. We implement the FONLL-A general-mass scheme in the FastKernel framework and assess its accuracy by comparison to the Les Houches heavy quark benchmarks. We discuss the impact on parton distributions of the treatment of the heavy quark masses, and we provide a determination of the uncertainty in the parton distributions due to uncertainty in the masses. We assess the impact of these uncertainties on LHC observables by providing parton sets with different values of the charm and bottom quark masses. Finally, we construct and discuss parton sets with a fixed number of flavours.Comment: 75 pages, 47 figures. Typos in Tab.2 (N_dat) and Eq.(70) correcte

    Altered visual feedback from an embodied avatar unconsciously influences movement amplitude and muscle activity

    Get PDF
    Evidence suggests that the sense of the position of our body parts can be surreptitiously deceived, for instance through illusory visual inputs. However, whether altered visual feedback during limb movement can induce substantial unconscious motor and muscular adjustments is not known. To address this question, we covertly manipulated virtual body movements in immersive virtual reality. Participants were instructed to flex their elbow to 90° while tensing an elastic band, as their virtual arm reproduced the same, a reduced (75°), or an amplified (105°) movement. We recorded muscle activity using electromyography, and assessed body ownership, agency and proprioception of the arm. Our results not only show that participants compensated for the avatar’s manipulated arm movement while being completely unaware of it, but also that it is possible to induce unconscious motor adaptations requiring significant changes in muscular activity. Altered visual feedback through body ownership illusions can influence motor performance in a process that bypasses awareness
    • …
    corecore