49 research outputs found

    Determination of lanthanides in fossil samples using laser induced breakdown spectroscopy

    Get PDF
    As being a fast, simple and relatively non-destructive analytical technique Laser-induced breakdown spectroscopy (LIBS) has a large variety of applications including the analysis of paleontological samples. In this work LIBS is employed for the quantitative determination of lanthanides (Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Sm, Tb, Tm and Yb) in vertebrate fossil samples comprising teeth, disarticulated complete or fragmented bones, eggshell fragments, and coprolites of dinosaurs, mammals and crocodiles. For emission line data, standard AnalaR grade salts of lanthanides were used. The major components: Iron, calcium, magnesium, silicon and aluminum in the samples were also determined. The analytical information may be helpful in studying the samples for their age, formation environment and other paleontological properties

    Europatitan eastwoodi, a new sauropod from the lower Cretaceous of Iberia in the initial radiation of somphospondylans in Laurasia

    Get PDF
    The sauropod of El Oterillo II is a specimen that was excavated from the Castrillo de la Reina Formation (Burgos, Spain), late Barremian-early Aptian, in the 2000s but initially remained undescribed. A tooth and elements of the axial skeleton, and the scapular and pelvic girdle, represent it. It is one of the most complete titanosauriform sauropods from the Early Cretaceous of Europe and presents an opportunity to deepen our understanding of the radiation of this clade in the Early Cretaceous and study the paleobiogeographical relationships of Iberia with Gondwana and with other parts of Laurasia. The late Barremian-early Aptian is the time interval in the Cretaceous with the greatest diversity of sauropod taxa described in Iberia: two titanosauriforms, Tastavinsaurus and Europatitan; and a rebbachisaurid, Demandasaurus. The new sauropod Europatitan eastwoodi n. gen. n. sp. presents a series of autapomorphic characters in the presacral vertebrae and scapula that distinguish it from the other sauropods of the Early Cretaceous of Iberia. Our phylogenetic study locates Europatitan as the basalmost member of the Somphospondyli, clearly differentiated from other clades such as Brachiosauridae and Titanosauria, and distantly related to the contemporaneous Tastavinsaurus. Europatitan could be a representative of a Eurogondwanan fauna like Demandasaurus, the other sauropod described from the Castrillo de la Reina Formation. The presence of a sauropod fauna with marked Gondwananan affinities in the Aptian of Iberia reinforces the idea of faunal exchanges between this continental masses during the Early Cretaceous. Further specimens and more detailed analysis are needed to elucidate if this Aptian fauna is caused by the presence of previously unnoticed Aptian land bridges, or it represents a relict fauna from an earlier dispersal event

    La Cantalera: an exceptional window onto the vertebrate biodiversity of the Hauterivian-Barremian transition in the Iberian Peninsula.

    Get PDF
    La Cantalera is an accumulation site for fossil vertebrates consisting mainly of teeth and isolated postcranial remains. It has the greatest vertebrate biodiversity of any site from the Hauterivian-Barremian transition in the Iberian Peninsula. Up to now, 31 vertebrate taxa have been recognized: an osteichthyan (Teleostei indet.), two amphibians (Albanerpetonidae indet. and Discoglossidae indet.), a chelonian (Pleurosternidae? indet.), a lizard (Paramacellodidae? indet.), four crocodylomorphs (cf. Theriosuchus sp., Bernissartiidae indet., Goniopholididae indet., cf. Lisboasaurus sp.), two pterosaurs (Istiodactylidae? indet., Ornithocheiridae? indet.), four ornithopod dinosaurs (Iguanodontoidea indet., Hadrosauroidea? indet., “Hypsilophodontidae” indet., Rhabdodontidae? indet.), a thyreophoran (Polacanthidae indet.), a sauropod (Euhelopodidae indet.), eleven theropods (Carcharodontosauridae? indet., Baryonychinae indet., aff. Paronychodon sp., Maniraptora indet. 1-3, Dromaeosaurinae indet. 1-3, Velociraptorinae indet., Avialae? indet.) and three or four multituberculate mammals (Cantalera abadi, Eobaatar sp., Plagiaulacidae or Eobaataridae gen. et sp. indet., “Plagiaulacida” indet.). Nine ootaxa have also been distinguished at the site of La Cantalera. Oofamilies assigned to dinosaurs (Elongaloolithidae, Prismatoolithidae, cf. Spheroolithidae), to crocodiles (Krokolithidae) and eggshells of two oofamilies incertidae sedis are represented. This association is consistent with the record of bone and tooth remains from the site. La Cantalera was formed in a marshy environment where there was an intermittent body of water. The great majority of the vertebrate fossil remains lack evidence of transport, so the preserved association is a good representation of the vertebrate ecosystem in or around the marshy area of La Cantalera. The vertebrate association of La Cantalera displays certain differences with respect to those from lacustrine environments of the Hauterivian-Barremian transition of the Iberian Range. These differences include, for example, the absence of Chondrichthyes, the merely token presence of the osteichthyans, the scarcity of chelonians, the presence of exclusively multituberculate mammals, the lower diversity of sauropods and the greater diversity of theropods

    Testing the persistence of Carcharodontosauridae (Theropoda) in the Upper Cretaceous of Patagonia based on dental evidence

    Get PDF
    The deposits corresponding to the Upper Cretaceous Neuquén and San Jorge Gulf basins from northern and central Patagonia have provided two of the most complete sequences of terrestrial vertebrate faunas of all Gondwanan landmasses. Among the carnivorous components, the carcharodontosaurid theropods appeared as common elements during the Early Cretaceous and the earliest Late Cretaceous in northern and central Patagonia. Although recorded mostly in the lower Turonian, isolated teeth suggest their presence in younger strata in northern and central Patagonia, reaching the clade in the region as late as the early Maastrichtian. Here, we verify the assignment of such isolated teeth previously identified as belonging to Carcharodontosauridae from the Upper Cretaceous strata of northern and central Patagonia. Using three different methods, namely a cladistic analysis performed on a dentition-based data matrix, and discriminant and cluster analyses conducted on a large dataset of theropod crown measurements, we assign a tooth from Candeleros Formation to carcharodontosaurid theropods and teeth from Cerro Lisandro, Bajo Barreal, Portezuelo, Plottier and Allen formations to abelisaurid theropods. These new reappraisals provide additional evidence about the extinction of Carcharodontosauridae in South America at about the late Turonian–earliest Coniacian as part of a general faunistic turnover event, with the last clear evidence of this lineage in Patagonia coming from the early–middle Turonian.Fil: Meso, Jorge Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación en Paleobiología y Geología; ArgentinaFil: Juárez Valieri, R. D.. Gobierno de la Provincia de Río Negro. Ministerio de Turismo, Cultura y Deporte. Secretaría de Cultura; ArgentinaFil: Porfiri, Juan Domingo. Museo del Desierto Patagónico; Argentina. Universidad Nacional del Comahue. Museo de Ciencias Naturales; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería; ArgentinaFil: Da Silva Correa, Samuel Aparecido. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación en Paleobiología y Geología; ArgentinaFil: Martinelli, Agustín Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Casal, G. A.. Universidad Nacional de la Patagonia "San Juan Bosco"; ArgentinaFil: Canudo, J. I.. Universidad de Zaragoza; EspañaFil: Poblete, F.. Museo del Desierto Patagónico; ArgentinaFil: Dos Santos, D.. Museo del Desierto Patagónico; Argentina. Universidad Nacional del Comahue. Museo de Ciencias Naturales; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería; Argentin

    Manus track preservation bias as a key factor for assessing trackmaker identity and quadrupedalism in basal ornithopods.

    Get PDF
    BACKGROUND: The Las Cerradicas site (Tithonian-Berriasian), Teruel, Spain, preserves at least seventeen dinosaur trackways, some of them formerly attributed to quadrupedal ornithopods, sauropods and theropods. The exposure of new track evidence allows a more detailed interpretation of the controversial tridactyl trackways as well as the modes of locomotion and taxonomic affinities of the trackmakers. METHODOLOGY/PRINCIPAL FINDINGS: Detailed stratigraphic analysis reveals four different levels where footprints have been preserved in different modes. Within the tridactyl trackways, manus tracks are mainly present in a specific horizon relative to surface tracks. The presence of manus tracks is interpreted as evidence of an ornithopod trackmaker. Cross-sections produced from photogrammetric digital models show different depths of the pes and manus, suggesting covariance in loading between the forelimbs and the hindlimbs. CONCLUSIONS/SIGNIFICANCE: Several features (digital pads, length/width ratio, claw marks) of some ornithopod pes tracks from Las Cerradicas are reminiscent of theropod pedal morphology. This morphological convergence, combined with the shallow nature of the manus tracks, which reduces preservation potential, opens a new window into the interpretation of these tridactyl tracks. Thus, trackmaker assignations during the Jurassic-Cretaceous interval of purported theropod trackways may potentially represent ornithopods. Moreover, the Las Cerradicas trackways are further evidence for quadrupedalism among some basal small- to medium-sized ornithopods from this time interval

    A New Crocodylian from the Late Maastrichtian of Spain: Implications for the Initial Radiation of Crocodyloids

    Get PDF
    The earliest crocodylians are known primarily from the Late Cretaceous of North America and Europe. The representatives of Gavialoidea and Alligatoroidea are known in the Late Cretaceous of both continents, yet the biogeographic origins of Crocodyloidea are poorly understood. Up to now, only one representative of this clade has been known from the Late Cretaceous, the basal crocodyloid Prodiplocynodon from the Maastrichtian of North America.The fossil studied is a skull collected from sandstones in the lower part of the Tremp Formation, in Chron C30n, dated at -67.6 to 65.5 Ma (late Maastrichtian), in Arén (Huesca, Spain). It is located in a continuous section that contains the K/P boundary, in which the dinosaur faunas closest to the K/P boundary in Europe have been described, including Arenysaurus ardevoli and Blasisaurus canudoi. Phylogenetic analysis places the new taxon, Arenysuchus gascabadiolorum, at the base of Crocodyloidea.The new taxon is the oldest crocodyloid representative in Eurasia. Crocodyloidea had previously only been known from the Palaeogene onwards in this part of Laurasia. Phylogenetically, Arenysuchus gascabadiolorum is situated at the base of the first radiation of crocodyloids that occurred in the late Maastrichtian, shedding light on this part of the cladogram. The presence of basal crocodyloids at the end of the Cretaceous both in North America and Europe provides new evidence of the faunal exchange via the Thulean Land Bridge during the Maastrichtian

    First Evidence of Reproductive Adaptation to “Island Effect” of a Dwarf Cretaceous Romanian Titanosaur, with Embryonic Integument In Ovo

    Get PDF
    <div><h3>Background</h3><p>The Cretaceous vertebrate assemblages of Romania are famous for geographically endemic dwarfed dinosaur taxa. We report the first complete egg clutches of a dwarf lithostrotian titanosaur, from Toteşti, Romania, and its reproductive adaptation to the “island effect”.</p> <h3>Methodology/Findings</h3><p>The egg clutches were discovered in sequential sedimentary layers of the Maastrichtian Sânpetru Formation, Toteşti. The occurrence of 11 homogenous clutches in successive strata suggests philopatry by the same dinosaur species, which laid clutches averaging four ∼12 cm diameters eggs. The eggs and eggshells display numerous characters shared with the positively identified material from egg-bearing level 4 of the Auca Mahuevo (Patagonia, Argentina) nemegtosaurid lithostrotian nesting site. Microscopic embryonic integument with bacterial evidences was recovered in one egg. The millimeter-size embryonic integument displays micron size dermal papillae implying an early embryological stage at the time of death, likely corresponding to early organogenesis before the skeleton formation.</p> <h3>Conclusions/Significance</h3><p>The shared oological characters between the Haţeg specimens and their mainland relatives suggest a highly conservative reproductive template, while the nest decrease in egg numbers per clutch may reflect an adaptive trait to a smaller body size due to the “island effect”. The combined presence of the lithostrotian egg and its embryo in the Early Cretaceous Gobi coupled with the oological similarities between the Haţeg and Auca Mahuevo oological material evidence that several titanosaur species migrated from Gondwana through the Haţeg Island before or during the Aptian/Albian. It also suggests that this island might have had episodic land bridges with the rest of the European archipelago and Asia deep into the Cretaceous.</p> </div

    A basal lithostrotian titanosaur (Dinosauria: Sauropoda) with a complete skull: Implications for the evolution and paleobiology of titanosauria

    Get PDF
    We describe Sarmientosaurus musacchioi gen. et sp. nov., a titanosaurian sauropod dinosaur from the Upper Cretaceous (Cenomanian - Turonian) Lower Member of the Bajo Barreal Formation of southern Chubut Province in central Patagonia, Argentina. The holotypic and only known specimen consists of an articulated, virtually complete skull and part of the cranial and middle cervical series. Sarmientosaurus exhibits the following distinctive features that we interpret as autapomorphies: (1) maximum diameter of orbit nearly 40% rostrocaudal length of cranium; (2) complex maxilla - lacrimal articulation, in which the lacrimal clasps the ascending ramus of the maxilla; (3) medial edge of caudal sector of maxillary ascending ramus bordering bony nasal aperture with low but distinct ridge; (4) ´tongue-like´ ventral process of quadratojugal that overlaps quadrate caudally; (5) separate foramina for all three branches of the trigeminal nerve; (6) absence of median venous canal connecting infundibular region to ventral part of brainstem; (7) subvertical premaxillary, procumbent maxillary, and recumbent dentary teeth; (8) cervical vertebrae with ´strut-like´ centroprezygapophyseal laminae; (9) extremely elongate and slender ossified tendon positioned ventrolateral to cervical vertebrae and ribs. The cranial endocast of Sarmientosaurus preserves some of the most complete information obtained to date regarding the brain and sensory systems of sauropods. Phylogenetic analysis recovers the new taxon as a basal member of Lithostrotia, as the most plesiomorphic titanosaurian to be preserved with a complete skull. Sarmientosaurus provides a wealth of new cranial evidence that reaffirms the close relationship of titanosaurs to Brachiosauridae. Moreover, the presence of the relatively derived lithostrotian Tapuiasaurus in Aptian deposits indicates that the new Patagonian genus represents a ´ghost lineage´ with a comparatively plesiomorphic craniodental form, the evolutionary history of which is missing for at least 13 million years of the Cretaceous. The skull anatomy of Sarmientosaurus suggests that multiple titanosaurian species with dissimilar cranial structures coexisted in the early Late Cretaceous of southern South America. Furthermore, the new taxon possesses a number of distinctive morphologies - such as the ossified cervical tendon, extremely pneumatized cervical vertebrae, and a habitually downward- facing snout - that have rarely, if ever, been documented in other titanosaurs, thus broadening our understanding of the anatomical diversity of this remarkable sauropod clade. The latter two features were convergently acquired by at least one penecontemporaneous diplodocoid, and may represent mutual specializations for consuming low-growing vegetation.Fil: Martínez, Rubén Darío. Universidad Nacional de la Patagonia; ArgentinaFil: Lamanna, Matthew C.. Carnegie Museum Of Natural History; Estados UnidosFil: Novas, Fernando Emilio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "bernardino Rivadavia"; ArgentinaFil: Ridgely, Ryan C.. Ohio University College Of Osteopathic Medicine; Estados UnidosFil: Casal, Gabriel. Universidad Nacional de la Patagonia; ArgentinaFil: Martínez, Javier E.. Hospital Regional de Comodoro Rivadavia; ArgentinaFil: Vita, Javier R.. Resonancia Magnética Borelli; ArgentinaFil: Witmer, Lawrence M.. Ohio University College Of Osteopathic Medicine; Estados Unido
    corecore